Show commands: Magma
Group invariants
Abstract group: | $C_7:F_7$ |
| |
Order: | $294=2 \cdot 3 \cdot 7^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $42$ |
| |
Transitive number $t$: | $61$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $21$ |
| |
Generators: | $(1,42,27,4,38,28)(2,40,25,6,37,29)(3,41,26,5,39,30)(7,12,8,10,9,11)(13,23,33,18,20,36)(14,22,32,16,21,34)(15,24,31,17,19,35)$, $(1,2,3)(4,42,28)(5,41,30)(6,40,29)(7,13,26)(8,14,25)(9,15,27)(10,12,11)(16,22,34)(17,24,35)(18,23,36)(19,39,32)(20,37,31)(21,38,33)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $21$: $C_7:C_3$ $42$: $F_7$, $(C_7:C_3) \times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 6: $C_6$
Degree 7: None
Degree 14: 14T14
Degree 21: None
Low degree siblings
14T14 x 3, 42T61 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{21}$ | $7$ | $2$ | $21$ | $( 1,29)( 2,30)( 3,28)( 4,21)( 5,19)( 6,20)( 7,36)( 8,34)( 9,35)(10,27)(11,26)(12,25)(13,41)(14,40)(15,42)(16,33)(17,32)(18,31)(22,39)(23,38)(24,37)$ |
3A1 | $3^{14}$ | $49$ | $3$ | $28$ | $( 1, 2, 3)( 4,23,16)( 5,22,17)( 6,24,18)( 7,13,26)( 8,14,25)( 9,15,27)(10,35,42)(11,36,41)(12,34,40)(19,39,32)(20,37,31)(21,38,33)(28,29,30)$ |
3A-1 | $3^{14}$ | $49$ | $3$ | $28$ | $( 1, 3, 2)( 4,16,23)( 5,17,22)( 6,18,24)( 7,26,13)( 8,25,14)( 9,27,15)(10,42,35)(11,41,36)(12,40,34)(19,32,39)(20,31,37)(21,33,38)(28,30,29)$ |
6A1 | $6^{7}$ | $49$ | $6$ | $35$ | $( 1,28, 2,29, 3,30)( 4,33,23,21,16,38)( 5,32,22,19,17,39)( 6,31,24,20,18,37)( 7,11,13,36,26,41)( 8,12,14,34,25,40)( 9,10,15,35,27,42)$ |
6A-1 | $6^{7}$ | $49$ | $6$ | $35$ | $( 1,30, 3,29, 2,28)( 4,38,16,21,23,33)( 5,39,17,19,22,32)( 6,37,18,20,24,31)( 7,41,26,36,13,11)( 8,40,25,34,14,12)( 9,42,27,35,15,10)$ |
7A1 | $7^{6}$ | $3$ | $7$ | $36$ | $( 1,21,39,13,31, 9,25)( 2,20,38,15,32, 8,26)( 3,19,37,14,33, 7,27)( 4,22,41,18,35,12,29)( 5,24,40,16,36,10,28)( 6,23,42,17,34,11,30)$ |
7A-1 | $7^{6}$ | $3$ | $7$ | $36$ | $( 1,25, 9,31,13,39,21)( 2,26, 8,32,15,38,20)( 3,27, 7,33,14,37,19)( 4,29,12,35,18,41,22)( 5,28,10,36,16,40,24)( 6,30,11,34,17,42,23)$ |
7B | $7^{6}$ | $6$ | $7$ | $36$ | $( 1,13,25,39, 9,21,31)( 2,15,26,38, 8,20,32)( 3,14,27,37, 7,19,33)( 4,35,22,12,41,29,18)( 5,36,24,10,40,28,16)( 6,34,23,11,42,30,17)$ |
7C1 | $7^{3},1^{21}$ | $6$ | $7$ | $18$ | $( 1,25, 9,31,13,39,21)( 2,26, 8,32,15,38,20)( 3,27, 7,33,14,37,19)$ |
7C-1 | $7^{3},1^{21}$ | $6$ | $7$ | $18$ | $( 1,31,21, 9,39,25,13)( 2,32,20, 8,38,26,15)( 3,33,19, 7,37,27,14)$ |
7D1 | $7^{6}$ | $6$ | $7$ | $36$ | $( 1,39,31,25,21,13, 9)( 2,38,32,26,20,15, 8)( 3,37,33,27,19,14, 7)( 4,35,22,12,41,29,18)( 5,36,24,10,40,28,16)( 6,34,23,11,42,30,17)$ |
7D-1 | $7^{6}$ | $6$ | $7$ | $36$ | $( 1, 9,13,21,25,31,39)( 2, 8,15,20,26,32,38)( 3, 7,14,19,27,33,37)( 4,29,12,35,18,41,22)( 5,28,10,36,16,40,24)( 6,30,11,34,17,42,23)$ |
7E1 | $7^{6}$ | $6$ | $7$ | $36$ | $( 1,39,31,25,21,13, 9)( 2,38,32,26,20,15, 8)( 3,37,33,27,19,14, 7)( 4,18,29,41,12,22,35)( 5,16,28,40,10,24,36)( 6,17,30,42,11,23,34)$ |
7E-1 | $7^{6}$ | $6$ | $7$ | $36$ | $( 1,21,39,13,31, 9,25)( 2,20,38,15,32, 8,26)( 3,19,37,14,33, 7,27)( 4,18,29,41,12,22,35)( 5,16,28,40,10,24,36)( 6,17,30,42,11,23,34)$ |
14A1 | $14^{3}$ | $21$ | $14$ | $39$ | $( 1,18,21,35,39,12,13,29,31, 4, 9,22,25,41)( 2,17,20,34,38,11,15,30,32, 6, 8,23,26,42)( 3,16,19,36,37,10,14,28,33, 5, 7,24,27,40)$ |
14A-1 | $14^{3}$ | $21$ | $14$ | $39$ | $( 1,41,25,22, 9, 4,31,29,13,12,39,35,21,18)( 2,42,26,23, 8, 6,32,30,15,11,38,34,20,17)( 3,40,27,24, 7, 5,33,28,14,10,37,36,19,16)$ |
Malle's constant $a(G)$: $1/18$
Character table
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 7A1 | 7A-1 | 7B | 7C1 | 7C-1 | 7D1 | 7D-1 | 7E1 | 7E-1 | 14A1 | 14A-1 | ||
Size | 1 | 7 | 49 | 49 | 49 | 49 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 21 | 21 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A1 | 7A-1 | 7B | 7C1 | 7C-1 | 7D1 | 7D-1 | 7E1 | 7E-1 | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | 7A-1 | 7A1 | 7B | 7C-1 | 7C1 | 7D-1 | 7D1 | 7E-1 | 7E1 | 14A-1 | 14A1 | |
7 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | |
Type | ||||||||||||||||||
294.12.1a | R | |||||||||||||||||
294.12.1b | R | |||||||||||||||||
294.12.1c1 | C | |||||||||||||||||
294.12.1c2 | C | |||||||||||||||||
294.12.1d1 | C | |||||||||||||||||
294.12.1d2 | C | |||||||||||||||||
294.12.3a1 | C | |||||||||||||||||
294.12.3a2 | C | |||||||||||||||||
294.12.3b1 | C | |||||||||||||||||
294.12.3b2 | C | |||||||||||||||||
294.12.6a | R | |||||||||||||||||
294.12.6b1 | C | |||||||||||||||||
294.12.6b2 | C | |||||||||||||||||
294.12.6c1 | C | |||||||||||||||||
294.12.6c2 | C | |||||||||||||||||
294.12.6d1 | C | |||||||||||||||||
294.12.6d2 | C |
Regular extensions
Data not computed