Show commands: Magma
Group invariants
Abstract group: | $C_5^7.(C_2^3\times F_5).D_4^2:D_4$ |
| |
Order: | $6400000000=2^{14} \cdot 5^{8}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $40$ |
| |
Transitive number $t$: | $274231$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,28,5,30,3,29,4,27)(2,26)(6,21)(7,25,8,24,10,22,9,23)(11,18,14,19,15,16,12,20)(13,17)(31,37,34,39,35,38,32,36)(33,40)$, $(1,24,37,16,2,23,39,17,4,21,38,19,3,22,36,18)(5,25,40,20)(6,27,12,31)(7,26,11,32,9,29,14,34,10,28,13,35,8,30,15,33)$, $(1,3,2,5)(6,8,10,7,9)(11,15,13,14)(16,25,19,21,18,24,20,23)(17,22)(26,33,28,34,27,31,30,35)(29,32)(37,40)(38,39)$, $(1,19,36,24)(2,20,40,25,4,17,38,22,5,18,37,23,3,16,39,21)(6,34,13,27)(7,35,12,29,8,31,11,26,10,33,14,30,9,32,15,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $D_{4}$ x 28, $C_2^3$ x 15 $16$: $QD_{16}$ x 4, $D_4\times C_2$ x 42 $32$: $Z_8 : Z_8^\times$ x 6, $C_2^2 \wr C_2$ x 28 $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ x 6 $128$: $C_2 \wr C_2\wr C_2$ x 8 Resolvents shown for degrees $\leq 10$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 5: None
Degree 8: $D_4\times C_2$
Degree 10: None
Degree 20: None
Low degree siblings
There are no siblings with degree $\leq 10$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed