Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid e^{10}=f^{20}=g^{10}=h^{20}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([22, 2, 2, 2, 2, 2, 2, 2, 2, 5, 2, 2, 5, 2, 5, 2, 2, 5, 2, 5, 5, 5, 5, 41253786288, 143114200329, 111, 279231652922, 178, 121066852547, 61507137541, 328910808164, 122400823626, 163122887888, 47872707810, 19642059452, 471615722693, 404405999739, 62007348001, 28067057111, 17010600117, 379, 544787798022, 298250858780, 186956731858, 9266031000, 5649073062, 9240000138, 445625939975, 370704181789, 12645916147, 55486934345, 8005552287, 30039400629, 6203932907, 513, 1162580018696, 604323118110, 190790443060, 4388326346, 29287716576, 11911684870, 19198083308, 38973753289, 185428707231, 211437360693, 159978966475, 26190482657, 43349213719, 13703927741, 5549585963, 5415609285, 647, 674675447434, 594003520032, 280277213622, 6014532556, 72672991170, 1395604440, 860445662, 182221324, 88139006, 714, 10813440011, 290611200033, 109094464567, 337997, 27273531747, 84601, 84623, 42405, 1478753765644, 774851821778, 291939648056, 102871225678, 22854832100, 15664792122, 25306309744, 12236510166, 2459628788, 1241852250, 1169972, 848, 858860040205, 36908748835, 5677056057, 5913679, 236544101, 325248123, 444505745, 421344167, 54232851, 24873, 177039989294, 262356211956, 181108224058, 112918080080, 103991712102, 42993456124, 7139880146, 7956828168, 5372730190, 732138212, 10857234, 45840578, 1189950, 982, 292384716815, 512214731813, 544510771259, 61343744081, 71925145703, 69078732925, 21145344147, 11299622569, 8533184191, 636838613, 27385835, 68717719, 637421, 1049, 976588800016, 15319040038, 16295628860, 143616082, 2157830504, 1078915326, 23936148, 389109770, 897814, 598636, 420753991697, 153383573415, 349240320061, 84395520083, 12291840105, 70266240127, 25058880149, 16299360171, 9670320193, 622512215, 7128237, 34769081, 1164565, 629987, 1183, 6420498, 19935590440, 25681920062, 1605120084, 4547840106, 1203840128, 133760172, 43472216, 6688238, 669082, 284566, 33788, 2789446584339, 225280041, 9011200063, 8448000085, 5350400107, 281600173, 35200217, 35200239, 1408283, 264327, 176349, 80519577620, 1083873052458, 467174400064, 29568000086, 116793600108, 14784000130, 5174400174, 369600218, 72996284, 1386328, 924350, 92794, 2271460291605, 797984135211, 137533440065, 161075200087, 17966080109, 1393920175, 1955360219, 251680241, 11809885, 5033929, 4840351, 503755]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.8, G.10, G.13, G.15, G.18, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "e", "e2", "f", "f2", "f4", "g", "g2", "h", "h2", "h4", "i", "i2", "j", "k", "l"]);
gap:G := PcGroupCode(478135566479476345959136099027349754906470076058200494165411779931235141356777747248678444566046043410843075878828915095064533647916347927755480001228161879495844394076461705831897097701983298570912476093934820853018658011315174851829841199092470411512272253041306359239953911333954225888855065842082719855015450831878376261426688555452105386429440482927179419675736958943097922620305614919659237845751643948596823620381263631129399972358768118316140598946318232997344974944377101055819185091867630580792337413611250747596527971790865783875774260967251775372781326700883698164568877605248933274888095724158888525221644536298796367882158721255240204388274832034976384812355873592444198882141595255291504338551863648709673399543013241850694491283460472015299271495900281378544701665404882380113662036211814059398910402395258320396276276582312221127455869926292096344145301392486260773230117928453698630646198867834094794770601735998532278843488043521731539687474383448279287435121574375387056747276226169656932082066057928970768245511877056641937799315146833507404637128643805479976929531296767185305497832689989829632323262001890490341249169647330686465180727435150172409386109092236361220463259878087013809961577770242668296699203145352883027441111992908915078233358066729912444250258554982891832934296274496088986123148156687536498549055415674020833380982417516995321068139045920493597330966633466173503925958746501534272073570727548857104014909137830748709375926031760445995453589325763497159902006201360189787467121124298551897922357721709281113896498626356264561671989279062050583536556990579625908448197560774169569473275288349199235153313259555635554789347697611931386844698968948066813832544362640465184725887380017073596365447099954023616571399415455195771355400289104606670219567732681432816062883805451168432976534323088572410374631355207776323417816715353124446804457085887426664335832981745841322697428330657836761758239999,6400000000); a := G.1; b := G.2; c := G.5; d := G.6; e := G.8; f := G.10; g := G.13; h := G.15; i := G.18; j := G.20; k := G.21; l := G.22;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(478135566479476345959136099027349754906470076058200494165411779931235141356777747248678444566046043410843075878828915095064533647916347927755480001228161879495844394076461705831897097701983298570912476093934820853018658011315174851829841199092470411512272253041306359239953911333954225888855065842082719855015450831878376261426688555452105386429440482927179419675736958943097922620305614919659237845751643948596823620381263631129399972358768118316140598946318232997344974944377101055819185091867630580792337413611250747596527971790865783875774260967251775372781326700883698164568877605248933274888095724158888525221644536298796367882158721255240204388274832034976384812355873592444198882141595255291504338551863648709673399543013241850694491283460472015299271495900281378544701665404882380113662036211814059398910402395258320396276276582312221127455869926292096344145301392486260773230117928453698630646198867834094794770601735998532278843488043521731539687474383448279287435121574375387056747276226169656932082066057928970768245511877056641937799315146833507404637128643805479976929531296767185305497832689989829632323262001890490341249169647330686465180727435150172409386109092236361220463259878087013809961577770242668296699203145352883027441111992908915078233358066729912444250258554982891832934296274496088986123148156687536498549055415674020833380982417516995321068139045920493597330966633466173503925958746501534272073570727548857104014909137830748709375926031760445995453589325763497159902006201360189787467121124298551897922357721709281113896498626356264561671989279062050583536556990579625908448197560774169569473275288349199235153313259555635554789347697611931386844698968948066813832544362640465184725887380017073596365447099954023616571399415455195771355400289104606670219567732681432816062883805451168432976534323088572410374631355207776323417816715353124446804457085887426664335832981745841322697428330657836761758239999,6400000000)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.15; i = G.18; j = G.20; k = G.21; l = G.22;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(478135566479476345959136099027349754906470076058200494165411779931235141356777747248678444566046043410843075878828915095064533647916347927755480001228161879495844394076461705831897097701983298570912476093934820853018658011315174851829841199092470411512272253041306359239953911333954225888855065842082719855015450831878376261426688555452105386429440482927179419675736958943097922620305614919659237845751643948596823620381263631129399972358768118316140598946318232997344974944377101055819185091867630580792337413611250747596527971790865783875774260967251775372781326700883698164568877605248933274888095724158888525221644536298796367882158721255240204388274832034976384812355873592444198882141595255291504338551863648709673399543013241850694491283460472015299271495900281378544701665404882380113662036211814059398910402395258320396276276582312221127455869926292096344145301392486260773230117928453698630646198867834094794770601735998532278843488043521731539687474383448279287435121574375387056747276226169656932082066057928970768245511877056641937799315146833507404637128643805479976929531296767185305497832689989829632323262001890490341249169647330686465180727435150172409386109092236361220463259878087013809961577770242668296699203145352883027441111992908915078233358066729912444250258554982891832934296274496088986123148156687536498549055415674020833380982417516995321068139045920493597330966633466173503925958746501534272073570727548857104014909137830748709375926031760445995453589325763497159902006201360189787467121124298551897922357721709281113896498626356264561671989279062050583536556990579625908448197560774169569473275288349199235153313259555635554789347697611931386844698968948066813832544362640465184725887380017073596365447099954023616571399415455195771355400289104606670219567732681432816062883805451168432976534323088572410374631355207776323417816715353124446804457085887426664335832981745841322697428330657836761758239999,6400000000)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.8; f = G.10; g = G.13; h = G.15; i = G.18; j = G.20; k = G.21; l = G.22;
|
Permutation group: | Degree $40$
$\langle(1,28,5,30,3,29,4,27)(2,26)(6,21)(7,25,8,24,10,22,9,23)(11,18,14,19,15,16,12,20) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 40 | (1,28,5,30,3,29,4,27)(2,26)(6,21)(7,25,8,24,10,22,9,23)(11,18,14,19,15,16,12,20)(13,17)(31,37,34,39,35,38,32,36)(33,40), (1,24,37,16,2,23,39,17,4,21,38,19,3,22,36,18)(5,25,40,20)(6,27,12,31)(7,26,11,32,9,29,14,34,10,28,13,35,8,30,15,33), (1,3,2,5)(6,8,10,7,9)(11,15,13,14)(16,25,19,21,18,24,20,23)(17,22)(26,33,28,34,27,31,30,35)(29,32)(37,40)(38,39), (1,19,36,24)(2,20,40,25,4,17,38,22,5,18,37,23,3,16,39,21)(6,34,13,27)(7,35,12,29,8,31,11,26,10,33,14,30,9,32,15,28) >;
gap:G := Group( (1,28,5,30,3,29,4,27)(2,26)(6,21)(7,25,8,24,10,22,9,23)(11,18,14,19,15,16,12,20)(13,17)(31,37,34,39,35,38,32,36)(33,40), (1,24,37,16,2,23,39,17,4,21,38,19,3,22,36,18)(5,25,40,20)(6,27,12,31)(7,26,11,32,9,29,14,34,10,28,13,35,8,30,15,33), (1,3,2,5)(6,8,10,7,9)(11,15,13,14)(16,25,19,21,18,24,20,23)(17,22)(26,33,28,34,27,31,30,35)(29,32)(37,40)(38,39), (1,19,36,24)(2,20,40,25,4,17,38,22,5,18,37,23,3,16,39,21)(6,34,13,27)(7,35,12,29,8,31,11,26,10,33,14,30,9,32,15,28) );
sage:G = PermutationGroup(['(1,28,5,30,3,29,4,27)(2,26)(6,21)(7,25,8,24,10,22,9,23)(11,18,14,19,15,16,12,20)(13,17)(31,37,34,39,35,38,32,36)(33,40)', '(1,24,37,16,2,23,39,17,4,21,38,19,3,22,36,18)(5,25,40,20)(6,27,12,31)(7,26,11,32,9,29,14,34,10,28,13,35,8,30,15,33)', '(1,3,2,5)(6,8,10,7,9)(11,15,13,14)(16,25,19,21,18,24,20,23)(17,22)(26,33,28,34,27,31,30,35)(29,32)(37,40)(38,39)', '(1,19,36,24)(2,20,40,25,4,17,38,22,5,18,37,23,3,16,39,21)(6,34,13,27)(7,35,12,29,8,31,11,26,10,33,14,30,9,32,15,28)'])
|
Transitive group: |
40T274231 |
|
|
|
more information |
Direct product: |
not computed |
Semidirect product: |
not computed |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Possibly split product: |
$(C_5^8.C_2^5)$ . $(D_4^2:D_4)$ (2) |
$(C_5^8.C_2^4.C_2^6)$ . $\SD_{16}$ (4) |
$(C_5^8.C_4^3.C_2^4.D_4)$ . $C_2$ (2) |
$(C_5^8.C_4^3)$ . $(D_4^2:C_2^2)$ (4) |
all 60 |
Elements of the group are displayed as permutations of degree 40.
The $1420 \times 1420$ character table is not available for this group.
The $1214 \times 1214$ rational character table is not available for this group.