Show commands: Magma
Group invariants
Abstract group: | $C_2^{18}.A_{19}$ |
| |
Order: | $15944266600786427904000=2^{33} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $38$ |
| |
Transitive number $t$: | $66$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,10,4,25,35,38,19,32,15,24,29,11,28,5,7,33,17,14,22)(2,9,3,26,36,37,20,31,16,23,30,12,27,6,8,34,18,13,21)$, $(1,11,3)(2,12,4)(5,13,17,33,24,10,27,19,36,31,21,30,8,37,26,6,14,18,34,23,9,28,20,35,32,22,29,7,38,25)(15,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $60822550204416000$: $A_{19}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 19: $A_{19}$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed