Properties

Label 159...000.a
Order \( 2^{33} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Exponent \( 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{34} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $38$
Trans deg. $38$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 38 | (1,10,4,25,35,38,19,32,15,24,29,11,28,5,7,33,17,14,22)(2,9,3,26,36,37,20,31,16,23,30,12,27,6,8,34,18,13,21), (1,11,3)(2,12,4)(5,13,17,33,24,10,27,19,36,31,21,30,8,37,26,6,14,18,34,23,9,28,20,35,32,22,29,7,38,25)(15,16) >;
 
Copy content gap:G := Group( (1,10,4,25,35,38,19,32,15,24,29,11,28,5,7,33,17,14,22)(2,9,3,26,36,37,20,31,16,23,30,12,27,6,8,34,18,13,21), (1,11,3)(2,12,4)(5,13,17,33,24,10,27,19,36,31,21,30,8,37,26,6,14,18,34,23,9,28,20,35,32,22,29,7,38,25)(15,16) );
 
Copy content sage:G = PermutationGroup(['(1,10,4,25,35,38,19,32,15,24,29,11,28,5,7,33,17,14,22)(2,9,3,26,36,37,20,31,16,23,30,12,27,6,8,34,18,13,21)', '(1,11,3)(2,12,4)(5,13,17,33,24,10,27,19,36,31,21,30,8,37,26,6,14,18,34,23,9,28,20,35,32,22,29,7,38,25)(15,16)'])
 

Group information

Description:$C_2^{18}.A_{19}$
Order: \(159\!\cdots\!000\)\(\medspace = 2^{33} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(465585120\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(318\!\cdots\!000\)\(\medspace = 2^{34} \cdot 3^{8} \cdot 5^{3} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 18, $A_{19}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and perfect (hence nonsolvable).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 26 28 30 32 33 34 35 36 39 40 42 44 45 48 52 55 56 60 63 65 66 70 72 77 78 80 84 88 90 104 105 110 112 120 126 130 132 140 144 154 165 168 180 210 240 280 330 420
Elements 1 4287531492351 1130462209111112 443596338630319104 27682734741594624 12553509355087352760 42368908042506240 55854082750292951040 50706732451046031360 43978597372324929024 280854488678400 587135040044314245120 53232727700275200 60326931784132915200 183946911686210469888 571887643323373977600 234474508835094528000 226097410098272993280 1678343852714360832000 285956731918410448896 3610580232801484800 4318137763430400000 931335438956974571520 41681225789315481600 470414236717685145600 846628660980104970240 498258331274575872000 5158735248044851200 703423526505283584000 19117556409575669760 332345227214743142400 42586182160220160000 437923597231545384960 209906997073389158400 131642115933339648000 25189726747770224640 240055942938152140800 268292947609387008000 6039494924540313600 451200599987532595200 949798353273492602880 47453174407102464000 122648204621434060800 174012947513317785600 153386030935100620800 318331711647645696000 103534198706405376000 229965383665188864000 265737776679773798400 561479800094038425600 158536741769183232000 191829457540711710720 153310255776792576000 3361266520503091200 90592423868104704000 142359523221307392000 446218016674786836480 205630422430777344000 367944613864302182400 271777271604314112000 242011189476222566400 110724073616572416000 310602596119216128000 48315959396322508800 114678504817164288000 66434444169943449600 69400267570387353600 132868888339886899200 56943809288522956800 144947878188967526400 28471904644261478400 15944266600786427904000
Conjugacy classes   1 29 6 180 3 244 2 210 5 81 1 858 1 40 11 60 1 73 2 228 5 14 514 9 92 244 2 2 3 3 84 2 136 104 21 3 84 8 1 52 379 3 2 25 36 32 2 10 22 129 8 33 2 2 7 8 128 13 6 11 27 2 6 2 36 8 38 10 8 6 8 4428
Divisions 1 29 6 180 3 244 2 210 5 81 1 858 1 40 10 60 1 73 1 228 5 14 514 9 92 241 2 2 2 3 84 2 136 103 21 3 84 8 1 52 379 2 1 24 34 32 1 9 22 129 8 29 2 2 7 8 128 10 3 11 27 2 3 1 36 8 34 10 8 3 8 4393
Autjugacy classes 1 29 6 180 3 244 2 210 5 81 1 858 1 40 10 60 1 72 1 228 5 14 514 9 92 241 2 2 2 3 84 2 136 103 21 3 84 8 1 52 379 2 1 24 34 32 1 9 22 129 8 28 2 2 7 8 128 10 3 11 27 2 3 1 36 8 34 10 8 3 8 4391

Minimal presentations

Permutation degree:$38$
Transitive degree:$38$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $38$ $\langle(1,10,4,25,35,38,19,32,15,24,29,11,28,5,7,33,17,14,22)(2,9,3,26,36,37,20,31,16,23,30,12,27,6,8,34,18,13,21) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 38 | (1,10,4,25,35,38,19,32,15,24,29,11,28,5,7,33,17,14,22)(2,9,3,26,36,37,20,31,16,23,30,12,27,6,8,34,18,13,21), (1,11,3)(2,12,4)(5,13,17,33,24,10,27,19,36,31,21,30,8,37,26,6,14,18,34,23,9,28,20,35,32,22,29,7,38,25)(15,16) >;
 
Copy content gap:G := Group( (1,10,4,25,35,38,19,32,15,24,29,11,28,5,7,33,17,14,22)(2,9,3,26,36,37,20,31,16,23,30,12,27,6,8,34,18,13,21), (1,11,3)(2,12,4)(5,13,17,33,24,10,27,19,36,31,21,30,8,37,26,6,14,18,34,23,9,28,20,35,32,22,29,7,38,25)(15,16) );
 
Copy content sage:G = PermutationGroup(['(1,10,4,25,35,38,19,32,15,24,29,11,28,5,7,33,17,14,22)(2,9,3,26,36,37,20,31,16,23,30,12,27,6,8,34,18,13,21)', '(1,11,3)(2,12,4)(5,13,17,33,24,10,27,19,36,31,21,30,8,37,26,6,14,18,34,23,9,28,20,35,32,22,29,7,38,25)(15,16)'])
 
Transitive group: 38T66 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{18}$ . $A_{19}$ more information

Elements of the group are displayed as permutations of degree 38.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 3 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{18}.A_{19}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^6.C_2^5.C_2^6.C_2^6.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3^4$
5-Sylow subgroup: $P_{ 5 } \simeq$ $C_5^3$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7^2$
11-Sylow subgroup: $P_{ 11 } \simeq$ $C_{11}$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$
17-Sylow subgroup: $P_{ 17 } \simeq$ $C_{17}$
19-Sylow subgroup: $P_{ 19 } \simeq$ $C_{19}$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $4428 \times 4428$ character table is not available for this group.

Rational character table

The $4393 \times 4393$ rational character table is not available for this group.