Show commands: Magma
Group invariants
| Abstract group: | $C_3^8.(C_6^4.(D_4\times D_6))$ |
| |
| Order: | $816293376=2^{9} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $92348$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,17,3,16,2,18)(4,13,8,11)(5,15,7,12)(6,14,9,10)(19,34,20,36,21,35)(22,33,26,29)(23,31,27,30)(24,32,25,28)$, $(1,32,36,30)(2,33,35,29)(3,31,34,28)(4,23,8,25,5,24,9,27,6,22,7,26)(10,21,11,19)(12,20)(13,17)(14,18,15,16)$, $(1,16)(2,18)(3,17)(4,10,6,11,5,12)(7,15,9,13,8,14)(19,36)(20,34)(21,35)(22,30,23,29,24,28)(25,31,27,32,26,33)$, $(1,14,36,10,2,13,34,11,3,15,35,12)(4,7,6,8,5,9)(16,29,20,31)(17,30,19,32)(18,28,21,33)(22,27,24,25,23,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $6$: $S_3$ $8$: $D_{4}$ x 4, $C_2^3$ x 15 $12$: $D_{6}$ x 7 $16$: $D_4\times C_2$ x 6, $C_2^4$ $24$: $S_4$, $S_3 \times C_2^2$ x 7 $32$: $C_2^2 \times D_4$ $48$: $S_4\times C_2$ x 7, 12T28 x 2, 24T30 $72$: $C_3^2:D_4$ $96$: 12T48 x 7, 24T143 $144$: 12T77 x 3 $192$: $V_4^2:(S_3\times C_2)$, 12T86 x 2, 24T400 $288$: 24T654 $384$: 12T136 x 3, 24T1076 $432$: 12T156 $768$: 12T186 x 2, 24T2481 $864$: 24T2646 $1536$: 24T4787 $1728$: 24T4943 $3456$: 36T4476 $3888$: 18T440 $6912$: 24T9626 $7776$: 36T7260 $13824$: 36T9778 $15552$: 36T10082 $31104$: 36T13539 $34992$: 18T675 $62208$: 36T17293 $69984$: 36T17550 $124416$: 36T20815 $139968$: 36T21098 $279936$: 36T25385 $559872$: 18T901, 36T30523 $1119744$: 36T36567, 36T37470 $10077696$: 36T59853 $90699264$: 36T77769 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Degree 9: None
Degree 12: 12T136
Degree 18: None
Low degree siblings
36T92348 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed