Properties

Label 816293376.bjx
Order \( 2^{9} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{14} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3 \)
Perm deg. not computed
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,17,3,16,2,18)(4,13,8,11)(5,15,7,12)(6,14,9,10)(19,34,20,36,21,35)(22,33,26,29)(23,31,27,30)(24,32,25,28), (1,32,36,30)(2,33,35,29)(3,31,34,28)(4,23,8,25,5,24,9,27,6,22,7,26)(10,21,11,19)(12,20)(13,17)(14,18,15,16), (1,16)(2,18)(3,17)(4,10,6,11,5,12)(7,15,9,13,8,14)(19,36)(20,34)(21,35)(22,30,23,29,24,28)(25,31,27,32,26,33), (1,14,36,10,2,13,34,11,3,15,35,12)(4,7,6,8,5,9)(16,29,20,31)(17,30,19,32)(18,28,21,33)(22,27,24,25,23,26) >;
 
Copy content gap:G := Group( (1,17,3,16,2,18)(4,13,8,11)(5,15,7,12)(6,14,9,10)(19,34,20,36,21,35)(22,33,26,29)(23,31,27,30)(24,32,25,28), (1,32,36,30)(2,33,35,29)(3,31,34,28)(4,23,8,25,5,24,9,27,6,22,7,26)(10,21,11,19)(12,20)(13,17)(14,18,15,16), (1,16)(2,18)(3,17)(4,10,6,11,5,12)(7,15,9,13,8,14)(19,36)(20,34)(21,35)(22,30,23,29,24,28)(25,31,27,32,26,33), (1,14,36,10,2,13,34,11,3,15,35,12)(4,7,6,8,5,9)(16,29,20,31)(17,30,19,32)(18,28,21,33)(22,27,24,25,23,26) );
 
Copy content sage:G = PermutationGroup(['(1,17,3,16,2,18)(4,13,8,11)(5,15,7,12)(6,14,9,10)(19,34,20,36,21,35)(22,33,26,29)(23,31,27,30)(24,32,25,28)', '(1,32,36,30)(2,33,35,29)(3,31,34,28)(4,23,8,25,5,24,9,27,6,22,7,26)(10,21,11,19)(12,20)(13,17)(14,18,15,16)', '(1,16)(2,18)(3,17)(4,10,6,11,5,12)(7,15,9,13,8,14)(19,36)(20,34)(21,35)(22,30,23,29,24,28)(25,31,27,32,26,33)', '(1,14,36,10,2,13,34,11,3,15,35,12)(4,7,6,8,5,9)(16,29,20,31)(17,30,19,32)(18,28,21,33)(22,27,24,25,23,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(677029887869795834411738699124943579083516884148695252759337335203412024574815031719491334933510268678004176872775491784269658330033669159371996511567883159102084512088074417035963099179811009754003100610427126870462649202340505232495433969872931432928715143944418705149692948386719574189556537036690489391597273661805898639654464013466300003847523450829539669430152569999197141457908396533637805294692423279947687311597204580069303510565798071673766954731358721637733963607348987802525525812140752113324075947536731148258353906029975675972344126763817596869629176187459829305950742189986986026503771397058019974898530524300202775590814763296754042051364062201442194723010636593556918993720403446341489966513142710112233677274428529802698672301136295350667565696804847766289158551237315312538720702775534472596507225960849305705737247723817452641104833458989652314113348767420312281129618352587214042549226014854535719989392286242119815522166578953916816293986785969836234923541652167219484335944546385404135909169682375871309670419999526561757850905753821549994077509503563077472453896785110579113258976504688805404027758148558617673878571569958222838757269147636387283026228871426262005331119047656434816667868837182568489733976291732518454972380777772507216357555678909728512114541048736433662484726359341061329251961738633818153381740264340041357929678355780552788903302128795916326271904054744058218709340595088322785090270974470134959047920719123990570403163413588519679,816293376)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 

Group information

Description:$C_3^8.(C_6^4.(D_4\times D_6))$
Order: \(816293376\)\(\medspace = 2^{9} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(9795520512\)\(\medspace = 2^{11} \cdot 3^{14} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 1806111 741392 48498912 186619248 16796160 410666112 151165440 816293376
Conjugacy classes   1 35 1251 30 6961 10 714 16 9018
Divisions 1 35 1251 30 6961 10 698 16 9002
Autjugacy classes 1 27 351 19 1901 8 222 10 2539

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid c^{4}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 10855712736, 22023783321, 111, 27665682002, 493051726, 12988714467, 19348354633, 12046679351, 245, 24883143124, 29363939906, 1101836388, 7062010565, 36520260507, 24648438721, 6878964119, 346935429, 379, 21765936198, 61152892444, 14477047250, 6503615960, 1326, 11086656775, 52886537117, 1611255411, 8284604489, 160590239, 674252949, 78921883, 513, 157290667784, 16460281758, 13346049076, 1149958730, 9600, 1039264894, 67691807049, 2710598911, 18634638053, 1884943355, 1762120897, 564545639, 170123083, 53888525, 647, 170688036298, 1159695008, 40069630182, 3874427820, 69794, 107279688, 25825436, 75657783179, 42618932961, 33290880535, 9802058189, 8058745827, 4254959929, 818437103, 653504709, 169024075, 18952769, 6321183, 781, 58012468812, 71809603042, 52675248968, 19277763726, 494308, 258100250, 43016854, 5131050, 110074612045, 120283695875, 32836731369, 5463397711, 1057795301, 199184955, 13904519, 9325219, 1103489, 20583, 1220881, 915, 185989478414, 58078959876, 22132218298, 4715520560, 3421542, 49468488, 1374376, 919683087, 59980141093, 56103168059, 11095417425, 10948711, 312035453, 52006057, 6158805, 241069, 30292061200, 112955420198, 55535445564, 4083146578, 34898792, 17449470, 186126506, 41846326, 2921946, 247142, 187222831505, 34419002151, 67636061917, 535344563, 110854761, 458815231, 87931179, 7869527, 1772755, 354327, 42280786962, 140831944744, 35116975934, 3523398996, 351039850, 175520000, 190146700, 48936312, 2543372, 215992, 88683724819, 110448666281, 74494717503, 14197730005, 1108546667, 116329089, 19388333, 95257, 90065, 89151777812, 121321569642, 93769896592, 24799686998, 3491921772, 2539906114, 423317838, 40515770, 8648902, 1217214, 372508485909, 222469675, 85138147841, 3237665815, 10974611053, 596319151, 26984231]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.14, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(677029887869795834411738699124943579083516884148695252759337335203412024574815031719491334933510268678004176872775491784269658330033669159371996511567883159102084512088074417035963099179811009754003100610427126870462649202340505232495433969872931432928715143944418705149692948386719574189556537036690489391597273661805898639654464013466300003847523450829539669430152569999197141457908396533637805294692423279947687311597204580069303510565798071673766954731358721637733963607348987802525525812140752113324075947536731148258353906029975675972344126763817596869629176187459829305950742189986986026503771397058019974898530524300202775590814763296754042051364062201442194723010636593556918993720403446341489966513142710112233677274428529802698672301136295350667565696804847766289158551237315312538720702775534472596507225960849305705737247723817452641104833458989652314113348767420312281129618352587214042549226014854535719989392286242119815522166578953916816293986785969836234923541652167219484335944546385404135909169682375871309670419999526561757850905753821549994077509503563077472453896785110579113258976504688805404027758148558617673878571569958222838757269147636387283026228871426262005331119047656434816667868837182568489733976291732518454972380777772507216357555678909728512114541048736433662484726359341061329251961738633818153381740264340041357929678355780552788903302128795916326271904054744058218709340595088322785090270974470134959047920719123990570403163413588519679,816293376); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.17; k := G.18; l := G.19; m := G.20; n := G.21; o := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(677029887869795834411738699124943579083516884148695252759337335203412024574815031719491334933510268678004176872775491784269658330033669159371996511567883159102084512088074417035963099179811009754003100610427126870462649202340505232495433969872931432928715143944418705149692948386719574189556537036690489391597273661805898639654464013466300003847523450829539669430152569999197141457908396533637805294692423279947687311597204580069303510565798071673766954731358721637733963607348987802525525812140752113324075947536731148258353906029975675972344126763817596869629176187459829305950742189986986026503771397058019974898530524300202775590814763296754042051364062201442194723010636593556918993720403446341489966513142710112233677274428529802698672301136295350667565696804847766289158551237315312538720702775534472596507225960849305705737247723817452641104833458989652314113348767420312281129618352587214042549226014854535719989392286242119815522166578953916816293986785969836234923541652167219484335944546385404135909169682375871309670419999526561757850905753821549994077509503563077472453896785110579113258976504688805404027758148558617673878571569958222838757269147636387283026228871426262005331119047656434816667868837182568489733976291732518454972380777772507216357555678909728512114541048736433662484726359341061329251961738633818153381740264340041357929678355780552788903302128795916326271904054744058218709340595088322785090270974470134959047920719123990570403163413588519679,816293376)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(677029887869795834411738699124943579083516884148695252759337335203412024574815031719491334933510268678004176872775491784269658330033669159371996511567883159102084512088074417035963099179811009754003100610427126870462649202340505232495433969872931432928715143944418705149692948386719574189556537036690489391597273661805898639654464013466300003847523450829539669430152569999197141457908396533637805294692423279947687311597204580069303510565798071673766954731358721637733963607348987802525525812140752113324075947536731148258353906029975675972344126763817596869629176187459829305950742189986986026503771397058019974898530524300202775590814763296754042051364062201442194723010636593556918993720403446341489966513142710112233677274428529802698672301136295350667565696804847766289158551237315312538720702775534472596507225960849305705737247723817452641104833458989652314113348767420312281129618352587214042549226014854535719989392286242119815522166578953916816293986785969836234923541652167219484335944546385404135909169682375871309670419999526561757850905753821549994077509503563077472453896785110579113258976504688805404027758148558617673878571569958222838757269147636387283026228871426262005331119047656434816667868837182568489733976291732518454972380777772507216357555678909728512114541048736433662484726359341061329251961738633818153381740264340041357929678355780552788903302128795916326271904054744058218709340595088322785090270974470134959047920719123990570403163413588519679,816293376)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.17; k = G.18; l = G.19; m = G.20; n = G.21; o = G.22;
 
Permutation group:Degree $36$ $\langle(1,17,3,16,2,18)(4,13,8,11)(5,15,7,12)(6,14,9,10)(19,34,20,36,21,35)(22,33,26,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,17,3,16,2,18)(4,13,8,11)(5,15,7,12)(6,14,9,10)(19,34,20,36,21,35)(22,33,26,29)(23,31,27,30)(24,32,25,28), (1,32,36,30)(2,33,35,29)(3,31,34,28)(4,23,8,25,5,24,9,27,6,22,7,26)(10,21,11,19)(12,20)(13,17)(14,18,15,16), (1,16)(2,18)(3,17)(4,10,6,11,5,12)(7,15,9,13,8,14)(19,36)(20,34)(21,35)(22,30,23,29,24,28)(25,31,27,32,26,33), (1,14,36,10,2,13,34,11,3,15,35,12)(4,7,6,8,5,9)(16,29,20,31)(17,30,19,32)(18,28,21,33)(22,27,24,25,23,26) >;
 
Copy content gap:G := Group( (1,17,3,16,2,18)(4,13,8,11)(5,15,7,12)(6,14,9,10)(19,34,20,36,21,35)(22,33,26,29)(23,31,27,30)(24,32,25,28), (1,32,36,30)(2,33,35,29)(3,31,34,28)(4,23,8,25,5,24,9,27,6,22,7,26)(10,21,11,19)(12,20)(13,17)(14,18,15,16), (1,16)(2,18)(3,17)(4,10,6,11,5,12)(7,15,9,13,8,14)(19,36)(20,34)(21,35)(22,30,23,29,24,28)(25,31,27,32,26,33), (1,14,36,10,2,13,34,11,3,15,35,12)(4,7,6,8,5,9)(16,29,20,31)(17,30,19,32)(18,28,21,33)(22,27,24,25,23,26) );
 
Copy content sage:G = PermutationGroup(['(1,17,3,16,2,18)(4,13,8,11)(5,15,7,12)(6,14,9,10)(19,34,20,36,21,35)(22,33,26,29)(23,31,27,30)(24,32,25,28)', '(1,32,36,30)(2,33,35,29)(3,31,34,28)(4,23,8,25,5,24,9,27,6,22,7,26)(10,21,11,19)(12,20)(13,17)(14,18,15,16)', '(1,16)(2,18)(3,17)(4,10,6,11,5,12)(7,15,9,13,8,14)(19,36)(20,34)(21,35)(22,30,23,29,24,28)(25,31,27,32,26,33)', '(1,14,36,10,2,13,34,11,3,15,35,12)(4,7,6,8,5,9)(16,29,20,31)(17,30,19,32)(18,28,21,33)(22,27,24,25,23,26)'])
 
Transitive group: 36T92348 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^7:D_6)$ $(C_3^{12}.C_2.C_2^5)$ . $S_4$ $(C_3^{12}.C_2^6.C_2)$ . $D_6$ (7) $C_3^8$ . $(C_6^4.(D_4\times D_6))$ all 73

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{8}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 152 normal subgroups (82 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_3^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $9018 \times 9018$ character table is not available for this group.

Rational character table

The $9002 \times 9002$ rational character table is not available for this group.