Show commands: Magma
Group invariants
| Abstract group: | $C_3^6.(C_3^6.C_2^6:S_4)$ |
| |
| Order: | $816293376=2^{9} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $91902$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,30,8,27,3,29,9,25,2,28,7,26)(4,22,34,32)(5,23,36,33)(6,24,35,31)(10,19,14,18)(11,20,13,17)(12,21,15,16)$, $(1,23,13,2,24,14)(3,22,15)(4,32,17,5,31,18)(6,33,16)(7,28,20,8,29,19)(9,30,21)(10,35,25,12,34,27)(11,36,26)$, $(1,11,28,36,13,33,3,12,30,34,14,32,2,10,29,35,15,31)(4,19,26,8,18,23,5,20,27,9,17,24,6,21,25,7,16,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$ x 3, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 9 $96$: $V_4^2:S_3$, 12T48 x 3 $192$: $V_4^2:(S_3\times C_2)$ x 2, 12T100 x 3 $384$: 12T136 x 2, 12T139 $768$: 16T1068 $1536$: 24T3032 $279936$: 18T863 x 2 $1119744$: 36T37258 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 9: None
Degree 12: 12T100
Degree 18: None
Low degree siblings
36T91408Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed