Properties

Label 816293376.wj
Order \( 2^{9} \cdot 3^{13} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{3} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,19,36,18,3,21,34,17,2,20,35,16)(4,14,23,29)(5,15,24,30)(6,13,22,28)(7,10,26,33)(8,11,27,32)(9,12,25,31), (1,14,3,15)(2,13)(7,8,9)(10,36)(11,34,12,35)(16,32,18,31)(17,33)(19,30,21,29)(20,28)(22,27)(23,25)(24,26), (1,35,2,34,3,36)(4,14,8,11,6,15,7,12,5,13,9,10)(22,29,27,31,23,28,25,32,24,30,26,33) >;
 
Copy content gap:G := Group( (1,19,36,18,3,21,34,17,2,20,35,16)(4,14,23,29)(5,15,24,30)(6,13,22,28)(7,10,26,33)(8,11,27,32)(9,12,25,31), (1,14,3,15)(2,13)(7,8,9)(10,36)(11,34,12,35)(16,32,18,31)(17,33)(19,30,21,29)(20,28)(22,27)(23,25)(24,26), (1,35,2,34,3,36)(4,14,8,11,6,15,7,12,5,13,9,10)(22,29,27,31,23,28,25,32,24,30,26,33) );
 
Copy content sage:G = PermutationGroup(['(1,19,36,18,3,21,34,17,2,20,35,16)(4,14,23,29)(5,15,24,30)(6,13,22,28)(7,10,26,33)(8,11,27,32)(9,12,25,31)', '(1,14,3,15)(2,13)(7,8,9)(10,36)(11,34,12,35)(16,32,18,31)(17,33)(19,30,21,29)(20,28)(22,27)(23,25)(24,26)', '(1,35,2,34,3,36)(4,14,8,11,6,15,7,12,5,13,9,10)(22,29,27,31,23,28,25,32,24,30,26,33)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(130514296904099625339102605947669284881541021344210961335439922807702001944992641115278799821120865973232985532569533400328411387424275168145270068212309581437118187206065291045951320797688951418476596407228501621014270082999769583061502775556756883627174695775995801810761860734015544437274207878997333049314714036484528519034048635784378122996616252658523299240765525377881941677527935139473290853178875105213858943969687633533914108066452730486799526349192267698745791815695820135567232067447296899423421376341355220044575391239459278584458970832799667556473530093640674003848365919252757242356466273464960445051304086511071320769736039665236019526314915218409276496873441076595576858913141414333506103516966827170058983152554502816159811965527727813167661274366158368658926347054544802654165395129261954811687945517525465456879531767032601633527158698417208206607766668300699888162082089518562177059354776431322178541186003887463493819516246523904616754545250548568181008053138894371696811593984175910290182847645866351744269170383784162048680040407029749180670115598351873187268917445564508530343016292842711059459344024899381797981761554532958321900794831853456678683233631892774655333473918111703657900992693702172311138225934075363316073946488583147711467845629279527070323047316094935368594998899056480538093175073131930117864903278554493995949975348112589235502077363253896916320842421583083507767774937955876550797512114521151876956227561297461682446492017084463061282935455899075500767995401663970042193492942078367231,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 

Group information

Description:$C_3^6.(C_3^6.C_2^6:S_4)$
Order: \(816293376\)\(\medspace = 2^{9} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(6530347008\)\(\medspace = 2^{12} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 965439 1371248 24774336 217693008 67184640 383372352 120932352 816293376
Conjugacy classes   1 29 662 26 1736 24 218 8 2704
Divisions 1 29 662 26 1736 19 210 7 2690
Autjugacy classes 1 19 233 12 643 9 88 4 1009

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 24 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p \mid b^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4799885112, 12336115881, 111, 26077895450, 32288050083, 21394837225, 11160212759, 1114039237, 16537664884, 6090713666, 1976932698, 608281370, 312, 106026528965, 45250948539, 15076673617, 8598928343, 1500415603, 89573313990, 7325375932, 10840841138, 8555164536, 5062878838, 2438652024, 446, 21931015, 68134606877, 13474450227, 5702535241, 4039495775, 2245682677, 74533692032, 63171152778, 39510344266, 9315505658, 5101168344, 1916246494, 304167344, 432855684, 580, 170126246409, 81088254751, 2771493173, 12566829515, 6843388737, 666621239, 335874141, 126393425938, 54589785524, 15156300576, 3372211996, 6704705930, 1715236104, 1075139350, 5493080, 300989622, 103865398, 714, 130496762891, 90650875425, 18771401143, 7417681997, 6419990115, 2308635769, 6523, 3420945540, 91339012942, 50300715950, 11019486270, 8548710556, 1333002650, 1081265472, 1070300254, 74244644, 184653822, 57412444, 15913580, 848, 121781366797, 54020736035, 42704604153, 10043066959, 5023130213, 1760597115, 880298641, 182464317, 3130745, 148599982094, 28596395556, 33123055738, 14997312080, 3773278182, 423189550, 36709434, 4238, 263219202063, 94552584229, 38681634875, 15654279249, 4023714919, 1063839869, 2717992083, 39802987, 9846423, 146326321168, 134290151462, 16960977852, 8525620306, 11728544360, 1150687422, 575343796, 242588, 10448344, 191244810257, 110559043623, 4594537789, 11260643411, 9577294953, 6149354239, 3074677205, 510307969, 85037277, 128585, 317444100882, 109264611496, 72496448702, 13855716948, 6656272234, 3147439808, 3198362262, 67806482, 88151422, 12745938, 146018104339, 37499235881, 27371520063, 6493639765, 1629619307, 7327584129, 508654231, 523860675, 8585519, 12854443, 283262474900, 88634988330, 77124180736, 25962152918, 14787710892, 1621420546, 3681726200, 292789924, 87068760, 5605268, 139503513621, 150483142699, 35558620481, 26810099799, 304432237, 6953848835, 3476924505, 459157445, 76212817, 793077]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o", "p"]);
 
Copy content gap:G := PcGroupCode(130514296904099625339102605947669284881541021344210961335439922807702001944992641115278799821120865973232985532569533400328411387424275168145270068212309581437118187206065291045951320797688951418476596407228501621014270082999769583061502775556756883627174695775995801810761860734015544437274207878997333049314714036484528519034048635784378122996616252658523299240765525377881941677527935139473290853178875105213858943969687633533914108066452730486799526349192267698745791815695820135567232067447296899423421376341355220044575391239459278584458970832799667556473530093640674003848365919252757242356466273464960445051304086511071320769736039665236019526314915218409276496873441076595576858913141414333506103516966827170058983152554502816159811965527727813167661274366158368658926347054544802654165395129261954811687945517525465456879531767032601633527158698417208206607766668300699888162082089518562177059354776431322178541186003887463493819516246523904616754545250548568181008053138894371696811593984175910290182847645866351744269170383784162048680040407029749180670115598351873187268917445564508530343016292842711059459344024899381797981761554532958321900794831853456678683233631892774655333473918111703657900992693702172311138225934075363316073946488583147711467845629279527070323047316094935368594998899056480538093175073131930117864903278554493995949975348112589235502077363253896916320842421583083507767774937955876550797512114521151876956227561297461682446492017084463061282935455899075500767995401663970042193492942078367231,816293376); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21; p := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(130514296904099625339102605947669284881541021344210961335439922807702001944992641115278799821120865973232985532569533400328411387424275168145270068212309581437118187206065291045951320797688951418476596407228501621014270082999769583061502775556756883627174695775995801810761860734015544437274207878997333049314714036484528519034048635784378122996616252658523299240765525377881941677527935139473290853178875105213858943969687633533914108066452730486799526349192267698745791815695820135567232067447296899423421376341355220044575391239459278584458970832799667556473530093640674003848365919252757242356466273464960445051304086511071320769736039665236019526314915218409276496873441076595576858913141414333506103516966827170058983152554502816159811965527727813167661274366158368658926347054544802654165395129261954811687945517525465456879531767032601633527158698417208206607766668300699888162082089518562177059354776431322178541186003887463493819516246523904616754545250548568181008053138894371696811593984175910290182847645866351744269170383784162048680040407029749180670115598351873187268917445564508530343016292842711059459344024899381797981761554532958321900794831853456678683233631892774655333473918111703657900992693702172311138225934075363316073946488583147711467845629279527070323047316094935368594998899056480538093175073131930117864903278554493995949975348112589235502077363253896916320842421583083507767774937955876550797512114521151876956227561297461682446492017084463061282935455899075500767995401663970042193492942078367231,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(130514296904099625339102605947669284881541021344210961335439922807702001944992641115278799821120865973232985532569533400328411387424275168145270068212309581437118187206065291045951320797688951418476596407228501621014270082999769583061502775556756883627174695775995801810761860734015544437274207878997333049314714036484528519034048635784378122996616252658523299240765525377881941677527935139473290853178875105213858943969687633533914108066452730486799526349192267698745791815695820135567232067447296899423421376341355220044575391239459278584458970832799667556473530093640674003848365919252757242356466273464960445051304086511071320769736039665236019526314915218409276496873441076595576858913141414333506103516966827170058983152554502816159811965527727813167661274366158368658926347054544802654165395129261954811687945517525465456879531767032601633527158698417208206607766668300699888162082089518562177059354776431322178541186003887463493819516246523904616754545250548568181008053138894371696811593984175910290182847645866351744269170383784162048680040407029749180670115598351873187268917445564508530343016292842711059459344024899381797981761554532958321900794831853456678683233631892774655333473918111703657900992693702172311138225934075363316073946488583147711467845629279527070323047316094935368594998899056480538093175073131930117864903278554493995949975348112589235502077363253896916320842421583083507767774937955876550797512114521151876956227561297461682446492017084463061282935455899075500767995401663970042193492942078367231,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22;
 
Permutation group:Degree $36$ $\langle(1,19,36,18,3,21,34,17,2,20,35,16)(4,14,23,29)(5,15,24,30)(6,13,22,28)(7,10,26,33) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,19,36,18,3,21,34,17,2,20,35,16)(4,14,23,29)(5,15,24,30)(6,13,22,28)(7,10,26,33)(8,11,27,32)(9,12,25,31), (1,14,3,15)(2,13)(7,8,9)(10,36)(11,34,12,35)(16,32,18,31)(17,33)(19,30,21,29)(20,28)(22,27)(23,25)(24,26), (1,35,2,34,3,36)(4,14,8,11,6,15,7,12,5,13,9,10)(22,29,27,31,23,28,25,32,24,30,26,33) >;
 
Copy content gap:G := Group( (1,19,36,18,3,21,34,17,2,20,35,16)(4,14,23,29)(5,15,24,30)(6,13,22,28)(7,10,26,33)(8,11,27,32)(9,12,25,31), (1,14,3,15)(2,13)(7,8,9)(10,36)(11,34,12,35)(16,32,18,31)(17,33)(19,30,21,29)(20,28)(22,27)(23,25)(24,26), (1,35,2,34,3,36)(4,14,8,11,6,15,7,12,5,13,9,10)(22,29,27,31,23,28,25,32,24,30,26,33) );
 
Copy content sage:G = PermutationGroup(['(1,19,36,18,3,21,34,17,2,20,35,16)(4,14,23,29)(5,15,24,30)(6,13,22,28)(7,10,26,33)(8,11,27,32)(9,12,25,31)', '(1,14,3,15)(2,13)(7,8,9)(10,36)(11,34,12,35)(16,32,18,31)(17,33)(19,30,21,29)(20,28)(22,27)(23,25)(24,26)', '(1,35,2,34,3,36)(4,14,8,11,6,15,7,12,5,13,9,10)(22,29,27,31,23,28,25,32,24,30,26,33)'])
 
Transitive group: 36T91408 36T91902 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6)$ . $S_4$ (3) $C_3^{12}$ . $(C_2^6:S_4)$ $(C_3^{12}.C_2^6.D_6)$ . $C_2$ (2) $(C_3^{12}.C_2^6.D_6)$ . $C_2$ all 25

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{7}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 52 normal subgroups (26 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_2^6.C_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 9 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $2704 \times 2704$ character table is not available for this group.

Rational character table

The $2690 \times 2690$ rational character table is not available for this group.