Show commands: Magma
Group invariants
| Abstract group: | $C_3^6.(C_3^6.C_2^6:S_4)$ |
| |
| Order: | $816293376=2^{9} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $91408$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,19,36,18,3,21,34,17,2,20,35,16)(4,14,23,29)(5,15,24,30)(6,13,22,28)(7,10,26,33)(8,11,27,32)(9,12,25,31)$, $(1,14,3,15)(2,13)(7,8,9)(10,36)(11,34,12,35)(16,32,18,31)(17,33)(19,30,21,29)(20,28)(22,27)(23,25)(24,26)$, $(1,35,2,34,3,36)(4,14,8,11,6,15,7,12,5,13,9,10)(22,29,27,31,23,28,25,32,24,30,26,33)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$ x 3, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 9 $96$: $V_4^2:S_3$, 12T48 x 3 $192$: $V_4^2:(S_3\times C_2)$ x 2, $C_2^3:S_4$ x 3 $384$: 12T136 x 2, 12T139 $768$: 16T1068 $1536$: 24T3032 $279936$: 18T863 x 2 $1119744$: 36T37258 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 9: None
Degree 12: $C_2^2:S_4$
Degree 18: None
Low degree siblings
36T91902Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed