Show commands: Magma
Group invariants
| Abstract group: | $C_3^{12}.C_4^2.S_4.C_2^2$ |
| |
| Order: | $816293376=2^{9} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $90640$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,30,24,6,2,28,23,4)(3,29,22,5)(7,33,14,35,8,31,15,34,9,32,13,36)(10,18,21,25,12,17,19,26)(11,16,20,27)$, $(1,16,26,22,3,18,25,23,2,17,27,24)(4,33,11,9,5,31,12,8)(6,32,10,7)(13,21,35,30,14,20,34,28)(15,19,36,29)$, $(1,15)(2,13,3,14)(4,20)(5,21,6,19)(7,25)(8,27)(9,26)(10,11)(16,32,18,33,17,31)(22,35,23,36)(24,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$ x 3, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 9 $96$: $V_4^2:S_3$, 12T48 x 3 $192$: 12T100 x 3 $384$: 12T139 $768$: 16T1063 $1536$: 24T3330 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 9: None
Degree 12: $C_2 \times S_4$
Degree 18: None
Low degree siblings
36T90487, 36T91436, 36T91901Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed