Properties

Label 816293376.fv
Order \( 2^{9} \cdot 3^{13} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{11} \cdot 3^{13} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,27,3,25)(2,26)(4,10,6,12,5,11)(7,32,8,33)(9,31)(13,34,15,36)(14,35)(16,24,18,22)(17,23)(19,28,21,29,20,30), (1,13,29,2,14,30)(3,15,28)(4,18,35,6,17,34,5,16,36)(7,10,25,8,12,26)(9,11,27)(19,24,32,21,23,33,20,22,31), (1,29,3,30,2,28)(4,24,5,22,6,23)(7,9,8)(10,27,12,26,11,25)(13,14,15)(16,20,17,19,18,21)(31,36,33,35,32,34) >;
 
Copy content gap:G := Group( (1,27,3,25)(2,26)(4,10,6,12,5,11)(7,32,8,33)(9,31)(13,34,15,36)(14,35)(16,24,18,22)(17,23)(19,28,21,29,20,30), (1,13,29,2,14,30)(3,15,28)(4,18,35,6,17,34,5,16,36)(7,10,25,8,12,26)(9,11,27)(19,24,32,21,23,33,20,22,31), (1,29,3,30,2,28)(4,24,5,22,6,23)(7,9,8)(10,27,12,26,11,25)(13,14,15)(16,20,17,19,18,21)(31,36,33,35,32,34) );
 
Copy content sage:G = PermutationGroup(['(1,27,3,25)(2,26)(4,10,6,12,5,11)(7,32,8,33)(9,31)(13,34,15,36)(14,35)(16,24,18,22)(17,23)(19,28,21,29,20,30)', '(1,13,29,2,14,30)(3,15,28)(4,18,35,6,17,34,5,16,36)(7,10,25,8,12,26)(9,11,27)(19,24,32,21,23,33,20,22,31)', '(1,29,3,30,2,28)(4,24,5,22,6,23)(7,9,8)(10,27,12,26,11,25)(13,14,15)(16,20,17,19,18,21)(31,36,33,35,32,34)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(194746050526490870014245908693018643939934634046535471027403165526503994551585071850242292391672706607134788734647922745023050987253546369189757563576082901040960889130838561350843035271689227727362433518315862626613534755823816280293098559818657908953964727207339266411293639511270162208511246504442468476779338914182100654372419312176498462469139744183614728954861455104655502172410522343066764169880944517699327865803249640800107623080621541034484939340688634813295777908468133769664408109083054378018962566476730321832476554268882826081649309388613069725886237082160159595468720389099652628402454312187968858224680950500741159106596361000448905226355760906467599652183059827533713168124056250002163243759680404287832441924046678025534387986763214998875839468876658681800015143715053404975665913885465393101740492623506952935824732264767217601032505780282187160577096512919555134263914323626205569452042609348379685169039561160277097324053459725502839306724873866225276645301301791093636448911702705784714063456499320777889204308258678942630063820320215362963540243661375492249485320730345198956128353258062426860373068017037078869456795986125567627147963721410015696540802065114955337137014809171505456267128182162637453107287898533521152409926679846985027952036543587184773657117617904364775115692257326277572779247679319178815911995803514738609805722350873874564847790594789403759097470461231731959015648650476408364669330871510406841876169648717084097239949594511280778164645367324238558117839910899296632313855,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.7; g = G.9; h = G.11; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22;
 

Group information

Description:$C_3^{12}.C_4^2.S_4.C_2^2$
Order: \(816293376\)\(\medspace = 2^{9} \cdot 3^{13} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(3265173504\)\(\medspace = 2^{11} \cdot 3^{13} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 9, $C_3$ x 13
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 806031 1371248 25509168 192343248 34012224 67184640 306110016 120932352 68024448 816293376
Conjugacy classes   1 19 542 20 793 4 24 89 8 4 1504
Divisions 1 19 542 20 793 4 19 80 7 4 1489
Autjugacy classes 1 17 233 14 425 2 10 44 4 2 752

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r \mid g^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 2, 3, 2, 2, 2, 2, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 9820225536, 28098912249, 111, 34697358962, 1130443822, 35695584675, 8533841737, 609812855, 2377417925, 20637236404, 8922710306, 13403868768, 6097266850, 2355543612, 6817897157, 23039140635, 19345672417, 2245438871, 2575848357, 3079411, 123374268870, 60944410324, 30756564350, 6668117528, 2618661062, 140361568, 446, 50156080135, 30058963997, 5108024115, 503177033, 5334682591, 710922549, 111171617, 31501958408, 61183311582, 15091297108, 3847681802, 2596502400, 36953254, 1568268644, 20887182, 580, 1231887369, 77613465631, 8324743733, 41155915, 10306657, 20532279, 20542861, 1923, 32246945290, 38363867024, 42130177902, 1740413740, 703536690, 11352824, 214670598, 79049948, 3529998, 2470786, 714, 98440759329, 42609245239, 73903181, 61586019, 30852217, 21569999, 12837, 52057893900, 91679757346, 26501135288, 9151084878, 7685922916, 120257402, 301261104, 30064486, 20780, 1252912, 77883531277, 63588112931, 62079080505, 2599736911, 2979567461, 1165393275, 873512785, 194483687, 66717, 4047353, 229747415054, 61853045796, 38822446138, 11392634960, 4711322982, 624603004, 1457010866, 312206568, 214030, 13008834, 67701325839, 65189904421, 56276250683, 18643857489, 4143845479, 1481002109, 2889363, 499758505, 684479, 41627755, 3350274064, 15076233254, 23574710076, 174685010, 122157480, 17449492, 4362506, 363764, 41930431527, 3027290173, 304211, 129419241, 64665343, 32332757, 13857003, 1154973, 151649169426, 1170453544, 37912292414, 15827125332, 3334877674, 615824502, 21940178, 3656902, 248314429459, 32839910441, 80061696063, 6674089045, 187292267, 646652289, 1109307031, 161663213, 69284355, 11547599, 186235822100, 259015722, 53574732352, 12448187222, 3879913068, 1939956610, 3737277080, 218245300, 36374424, 380453179413, 5419746859, 80226322241, 22779998295, 1829380717, 4674371459, 1680649497, 1600464271, 685913381, 114319105]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r := Explode([G.1, G.2, G.4, G.5, G.6, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "b", "b2", "c", "d", "e", "f", "f2", "g", "g2", "h", "h2", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r"]);
 
Copy content gap:G := PcGroupCode(194746050526490870014245908693018643939934634046535471027403165526503994551585071850242292391672706607134788734647922745023050987253546369189757563576082901040960889130838561350843035271689227727362433518315862626613534755823816280293098559818657908953964727207339266411293639511270162208511246504442468476779338914182100654372419312176498462469139744183614728954861455104655502172410522343066764169880944517699327865803249640800107623080621541034484939340688634813295777908468133769664408109083054378018962566476730321832476554268882826081649309388613069725886237082160159595468720389099652628402454312187968858224680950500741159106596361000448905226355760906467599652183059827533713168124056250002163243759680404287832441924046678025534387986763214998875839468876658681800015143715053404975665913885465393101740492623506952935824732264767217601032505780282187160577096512919555134263914323626205569452042609348379685169039561160277097324053459725502839306724873866225276645301301791093636448911702705784714063456499320777889204308258678942630063820320215362963540243661375492249485320730345198956128353258062426860373068017037078869456795986125567627147963721410015696540802065114955337137014809171505456267128182162637453107287898533521152409926679846985027952036543587184773657117617904364775115692257326277572779247679319178815911995803514738609805722350873874564847790594789403759097470461231731959015648650476408364669330871510406841876169648717084097239949594511280778164645367324238558117839910899296632313855,816293376); a := G.1; b := G.2; c := G.4; d := G.5; e := G.6; f := G.7; g := G.9; h := G.11; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17; n := G.18; o := G.19; p := G.20; q := G.21; r := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(194746050526490870014245908693018643939934634046535471027403165526503994551585071850242292391672706607134788734647922745023050987253546369189757563576082901040960889130838561350843035271689227727362433518315862626613534755823816280293098559818657908953964727207339266411293639511270162208511246504442468476779338914182100654372419312176498462469139744183614728954861455104655502172410522343066764169880944517699327865803249640800107623080621541034484939340688634813295777908468133769664408109083054378018962566476730321832476554268882826081649309388613069725886237082160159595468720389099652628402454312187968858224680950500741159106596361000448905226355760906467599652183059827533713168124056250002163243759680404287832441924046678025534387986763214998875839468876658681800015143715053404975665913885465393101740492623506952935824732264767217601032505780282187160577096512919555134263914323626205569452042609348379685169039561160277097324053459725502839306724873866225276645301301791093636448911702705784714063456499320777889204308258678942630063820320215362963540243661375492249485320730345198956128353258062426860373068017037078869456795986125567627147963721410015696540802065114955337137014809171505456267128182162637453107287898533521152409926679846985027952036543587184773657117617904364775115692257326277572779247679319178815911995803514738609805722350873874564847790594789403759097470461231731959015648650476408364669330871510406841876169648717084097239949594511280778164645367324238558117839910899296632313855,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.7; g = G.9; h = G.11; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(194746050526490870014245908693018643939934634046535471027403165526503994551585071850242292391672706607134788734647922745023050987253546369189757563576082901040960889130838561350843035271689227727362433518315862626613534755823816280293098559818657908953964727207339266411293639511270162208511246504442468476779338914182100654372419312176498462469139744183614728954861455104655502172410522343066764169880944517699327865803249640800107623080621541034484939340688634813295777908468133769664408109083054378018962566476730321832476554268882826081649309388613069725886237082160159595468720389099652628402454312187968858224680950500741159106596361000448905226355760906467599652183059827533713168124056250002163243759680404287832441924046678025534387986763214998875839468876658681800015143715053404975665913885465393101740492623506952935824732264767217601032505780282187160577096512919555134263914323626205569452042609348379685169039561160277097324053459725502839306724873866225276645301301791093636448911702705784714063456499320777889204308258678942630063820320215362963540243661375492249485320730345198956128353258062426860373068017037078869456795986125567627147963721410015696540802065114955337137014809171505456267128182162637453107287898533521152409926679846985027952036543587184773657117617904364775115692257326277572779247679319178815911995803514738609805722350873874564847790594789403759097470461231731959015648650476408364669330871510406841876169648717084097239949594511280778164645367324238558117839910899296632313855,816293376)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.6; f = G.7; g = G.9; h = G.11; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19; p = G.20; q = G.21; r = G.22;
 
Permutation group:Degree $36$ $\langle(1,27,3,25)(2,26)(4,10,6,12,5,11)(7,32,8,33)(9,31)(13,34,15,36)(14,35)(16,24,18,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,27,3,25)(2,26)(4,10,6,12,5,11)(7,32,8,33)(9,31)(13,34,15,36)(14,35)(16,24,18,22)(17,23)(19,28,21,29,20,30), (1,13,29,2,14,30)(3,15,28)(4,18,35,6,17,34,5,16,36)(7,10,25,8,12,26)(9,11,27)(19,24,32,21,23,33,20,22,31), (1,29,3,30,2,28)(4,24,5,22,6,23)(7,9,8)(10,27,12,26,11,25)(13,14,15)(16,20,17,19,18,21)(31,36,33,35,32,34) >;
 
Copy content gap:G := Group( (1,27,3,25)(2,26)(4,10,6,12,5,11)(7,32,8,33)(9,31)(13,34,15,36)(14,35)(16,24,18,22)(17,23)(19,28,21,29,20,30), (1,13,29,2,14,30)(3,15,28)(4,18,35,6,17,34,5,16,36)(7,10,25,8,12,26)(9,11,27)(19,24,32,21,23,33,20,22,31), (1,29,3,30,2,28)(4,24,5,22,6,23)(7,9,8)(10,27,12,26,11,25)(13,14,15)(16,20,17,19,18,21)(31,36,33,35,32,34) );
 
Copy content sage:G = PermutationGroup(['(1,27,3,25)(2,26)(4,10,6,12,5,11)(7,32,8,33)(9,31)(13,34,15,36)(14,35)(16,24,18,22)(17,23)(19,28,21,29,20,30)', '(1,13,29,2,14,30)(3,15,28)(4,18,35,6,17,34,5,16,36)(7,10,25,8,12,26)(9,11,27)(19,24,32,21,23,33,20,22,31)', '(1,29,3,30,2,28)(4,24,5,22,6,23)(7,9,8)(10,27,12,26,11,25)(13,14,15)(16,20,17,19,18,21)(31,36,33,35,32,34)'])
 
Transitive group: 36T90487 36T90640 36T91436 36T91901 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^6)$ . $S_4$ (3) $C_3^{12}$ . $(C_2^6:S_4)$ $(C_3^{12}.C_4^2.S_4)$ . $C_2^2$ (2) $(C_3^{12}.C_4^2.S_4)$ . $C_2^2$ (2) all 21

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 44 normal subgroups (36 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_3^{12}.C_4^2.A_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_4^2:C_2^3$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1504 \times 1504$ character table is not available for this group.

Rational character table

The $1489 \times 1489$ rational character table is not available for this group.