Show commands: Magma
Group invariants
| Abstract group: | $C_3^{12}.C_4^2.S_4.C_2^2$ |
| |
| Order: | $816293376=2^{9} \cdot 3^{13}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $90487$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,27,3,25)(2,26)(4,10,6,12,5,11)(7,32,8,33)(9,31)(13,34,15,36)(14,35)(16,24,18,22)(17,23)(19,28,21,29,20,30)$, $(1,13,29,2,14,30)(3,15,28)(4,18,35,6,17,34,5,16,36)(7,10,25,8,12,26)(9,11,27)(19,24,32,21,23,33,20,22,31)$, $(1,29,3,30,2,28)(4,24,5,22,6,23)(7,9,8)(10,27,12,26,11,25)(13,14,15)(16,20,17,19,18,21)(31,36,33,35,32,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$ x 3, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 9 $96$: $V_4^2:S_3$, 12T48 x 3 $192$: 12T100 x 3 $384$: 12T139 $768$: 16T1063 $1536$: 24T3330 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: $S_4$
Degree 6: $S_4$
Degree 9: None
Degree 12: $S_4$
Degree 18: None
Low degree siblings
36T90640, 36T91436, 36T91901Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed