Show commands: Magma
Group invariants
| Abstract group: | $C_2^{12}.(C_6^3.S_3^2)$ |
| |
| Order: | $31850496=2^{17} \cdot 3^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $70179$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33)$, $(1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32)$, $(1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $S_3$ x 2, $C_6$ x 7 $8$: $C_2^3$ $12$: $D_{6}$ x 6, $C_6\times C_2$ x 7 $18$: $S_3\times C_3$ x 2 $24$: $S_4$, $S_3 \times C_2^2$ x 2, 24T3 $36$: $S_3^2$, $C_6\times S_3$ x 6 $48$: $S_4\times C_2$ x 3 $54$: $(C_9:C_3):C_2$ $72$: 12T37, 12T45, 24T68 x 2 $96$: 12T48 $108$: $C_3^2 : D_{6} $, 12T70, 18T45 x 3 $144$: 12T83, 18T61 x 3 $216$: 18T94, 18T98, 24T547, 36T217 $288$: 18T111, 36T330 $324$: 18T118, 18T122 $432$: 18T147 x 3, 18T152, 24T1328 $648$: 36T996, 36T1013 $864$: 18T228, 36T1297, 36T1298 $972$: 18T232 $1296$: 36T1989, 36T1999 $1944$: 36T2655 $2592$: 36T3513, 36T3527 $3888$: 36T4609 $7776$: 36T7106 $3981312$: 24T23152 $7962624$: 36T57890 $15925248$: 36T64287 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$
Degree 9: None
Degree 12: None
Degree 18: 18T232
Low degree siblings
36T70179Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed