Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid b^{18}=c^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([22, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 44, 8475215, 1752470678, 489256638, 178, 2478002211, 295369033, 333, 2036620084, 684931526, 342386357, 847070163, 571085905, 248248115, 30166185, 379, 430569222, 1597486996, 411952514, 263304036, 95452066, 2869428679, 1241013341, 601600083, 303926905, 147372287, 20928981, 24495643, 513, 5676254504, 488196750, 88886212, 406688114, 77203464, 8641630, 22023284, 61585929, 2993791, 1030566293, 5132235, 166417, 55559, 23901, 5797801162, 2933243312, 1217049030, 213661876, 73128626, 24376296, 12179518, 7058336, 3530724, 3079307, 3199388577, 100590391, 415705037, 79805187, 26601817, 13281983, 7696821, 3846931, 6865290444, 38918914, 1453712888, 391690806, 15907420, 69384866, 34733700, 288454, 4013054, 137712973, 945828633, 173039407, 4324421, 28984155, 14403457, 329111, 149877, 1317468298, 735288920, 256501182, 85880644, 42750326, 14250228, 7156900, 8442745359, 4225478437, 715309115, 64323153, 253718887, 7324541, 3256851, 13367017, 2733119, 7452324016, 4624803254, 156317100, 950019922, 108412232, 65233206, 31754992, 8581226, 4147104, 9990775889, 5000006919, 2094840853, 577817147, 299119497, 10977247, 5944901, 15798195, 3454897, 10856229138, 480241912, 161435006, 1069777452, 102657562, 41141360, 16718478, 4248724, 9717440, 1808231059, 938329961, 2220514623, 32218645, 152444267, 35560929, 25890631, 15013853, 280035, 13121650100, 1904031402, 1233429184, 320332406, 159617412, 95833714, 64948112, 14367450, 2442328, 13825525845, 1948595659, 359735969, 179083959, 276153085, 21919523, 46644201, 9539815, 2243537]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.6, G.8, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "a2", "b", "b2", "b6", "c", "c2", "d", "d2", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
gap:G := PcGroupCode(12736091497826266938740665691907885919313134834056150603559951550131011384072879929853413596227833472548173464271437066721296122567780182072740117672770830773037058699222752009985120224277742010223196450567313934029351420800136356519842008223528571838846388299751804882395396134597780990943165038432476698414418010654968499034414731436275857568060331930684104865276321060679633394115098458017259108919811746384939443293193502688246566705175573900092173765158221274796944210779179502150288712267526240356712670327201444343893978530156569294592683523231517270277741232902833698876176040356064343855418014170179985773406511274457630058842774588597723385609592211280294238792707671109919932732235020127639311458822500305621573446388958057578622817120603521235766386234275196631038807518340191434067800093286222718493027096119094094437097148714185018406399224190471513354526830046553109346340867745162456675662209640485813935328302340166907586074486862262072203805704681198135982376393820206848723160181570386781835513725413076975138213964910472452677156348363277970185999240341090735148728538214009651584462090476286542855404035372111640050609931030361615703385853604378156307699823098293821440,31850496); a := G.1; b := G.3; c := G.6; d := G.8; e := G.10; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17; m := G.18; n := G.19; o := G.20; p := G.21; q := G.22;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(12736091497826266938740665691907885919313134834056150603559951550131011384072879929853413596227833472548173464271437066721296122567780182072740117672770830773037058699222752009985120224277742010223196450567313934029351420800136356519842008223528571838846388299751804882395396134597780990943165038432476698414418010654968499034414731436275857568060331930684104865276321060679633394115098458017259108919811746384939443293193502688246566705175573900092173765158221274796944210779179502150288712267526240356712670327201444343893978530156569294592683523231517270277741232902833698876176040356064343855418014170179985773406511274457630058842774588597723385609592211280294238792707671109919932732235020127639311458822500305621573446388958057578622817120603521235766386234275196631038807518340191434067800093286222718493027096119094094437097148714185018406399224190471513354526830046553109346340867745162456675662209640485813935328302340166907586074486862262072203805704681198135982376393820206848723160181570386781835513725413076975138213964910472452677156348363277970185999240341090735148728538214009651584462090476286542855404035372111640050609931030361615703385853604378156307699823098293821440,31850496)'); a = G.1; b = G.3; c = G.6; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(12736091497826266938740665691907885919313134834056150603559951550131011384072879929853413596227833472548173464271437066721296122567780182072740117672770830773037058699222752009985120224277742010223196450567313934029351420800136356519842008223528571838846388299751804882395396134597780990943165038432476698414418010654968499034414731436275857568060331930684104865276321060679633394115098458017259108919811746384939443293193502688246566705175573900092173765158221274796944210779179502150288712267526240356712670327201444343893978530156569294592683523231517270277741232902833698876176040356064343855418014170179985773406511274457630058842774588597723385609592211280294238792707671109919932732235020127639311458822500305621573446388958057578622817120603521235766386234275196631038807518340191434067800093286222718493027096119094094437097148714185018406399224190471513354526830046553109346340867745162456675662209640485813935328302340166907586074486862262072203805704681198135982376393820206848723160181570386781835513725413076975138213964910472452677156348363277970185999240341090735148728538214009651584462090476286542855404035372111640050609931030361615703385853604378156307699823098293821440,31850496)'); a = G.1; b = G.3; c = G.6; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
|
Permutation group: | Degree $36$
$\langle(1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33), (1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32), (1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28) >;
gap:G := Group( (1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33), (1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32), (1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28) );
sage:G = PermutationGroup(['(1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33)', '(1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32)', '(1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28)'])
|
Transitive group: |
36T70179 |
|
|
|
more information |
Direct product: |
$C_2$ $\, \times\, $ $(C_2^6.A_4^3.(C_6\times S_4))$ |
Semidirect product: |
not computed |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Possibly split product: |
$(C_2^{12}.C_6^3)$ . $S_3^2$ |
$C_2^{15}$ . $(C_3^3.S_3^2)$ |
$C_2^{12}$ . $(C_6^3.S_3^2)$ |
$(C_2^{12}.C_3.C_6^3)$ . $D_6$ (4) |
all 66 |
Elements of the group are displayed as permutations of degree 36.
The $768 \times 768$ character table is not available for this group.
The $512 \times 512$ rational character table is not available for this group.