Properties

Label 31850496.bh
Order \( 2^{17} \cdot 3^{5} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{18} \cdot 3^{5} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33), (1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32), (1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28) >;
 
Copy content gap:G := Group( (1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33), (1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32), (1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28) );
 
Copy content sage:G = PermutationGroup(['(1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33)', '(1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32)', '(1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12736091497826266938740665691907885919313134834056150603559951550131011384072879929853413596227833472548173464271437066721296122567780182072740117672770830773037058699222752009985120224277742010223196450567313934029351420800136356519842008223528571838846388299751804882395396134597780990943165038432476698414418010654968499034414731436275857568060331930684104865276321060679633394115098458017259108919811746384939443293193502688246566705175573900092173765158221274796944210779179502150288712267526240356712670327201444343893978530156569294592683523231517270277741232902833698876176040356064343855418014170179985773406511274457630058842774588597723385609592211280294238792707671109919932732235020127639311458822500305621573446388958057578622817120603521235766386234275196631038807518340191434067800093286222718493027096119094094437097148714185018406399224190471513354526830046553109346340867745162456675662209640485813935328302340166907586074486862262072203805704681198135982376393820206848723160181570386781835513725413076975138213964910472452677156348363277970185999240341090735148728538214009651584462090476286542855404035372111640050609931030361615703385853604378156307699823098293821440,31850496)'); a = G.1; b = G.3; c = G.6; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
 

Group information

Description:$C_2^{12}.(C_6^3.S_3^2)$
Order: \(31850496\)\(\medspace = 2^{17} \cdot 3^{5} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^{12}.C_6^2.C_3^3.C_2^4$, of order \(63700992\)\(\medspace = 2^{18} \cdot 3^{5} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 17, $C_3$ x 5
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 51199 50624 2045952 5704256 2654208 13381632 7962624 31850496
Conjugacy classes   1 107 13 82 415 6 132 12 768
Divisions 1 107 9 82 231 4 70 8 512
Autjugacy classes 1 103 13 41 397 6 66 9 636

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q \mid b^{18}=c^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([22, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 44, 8475215, 1752470678, 489256638, 178, 2478002211, 295369033, 333, 2036620084, 684931526, 342386357, 847070163, 571085905, 248248115, 30166185, 379, 430569222, 1597486996, 411952514, 263304036, 95452066, 2869428679, 1241013341, 601600083, 303926905, 147372287, 20928981, 24495643, 513, 5676254504, 488196750, 88886212, 406688114, 77203464, 8641630, 22023284, 61585929, 2993791, 1030566293, 5132235, 166417, 55559, 23901, 5797801162, 2933243312, 1217049030, 213661876, 73128626, 24376296, 12179518, 7058336, 3530724, 3079307, 3199388577, 100590391, 415705037, 79805187, 26601817, 13281983, 7696821, 3846931, 6865290444, 38918914, 1453712888, 391690806, 15907420, 69384866, 34733700, 288454, 4013054, 137712973, 945828633, 173039407, 4324421, 28984155, 14403457, 329111, 149877, 1317468298, 735288920, 256501182, 85880644, 42750326, 14250228, 7156900, 8442745359, 4225478437, 715309115, 64323153, 253718887, 7324541, 3256851, 13367017, 2733119, 7452324016, 4624803254, 156317100, 950019922, 108412232, 65233206, 31754992, 8581226, 4147104, 9990775889, 5000006919, 2094840853, 577817147, 299119497, 10977247, 5944901, 15798195, 3454897, 10856229138, 480241912, 161435006, 1069777452, 102657562, 41141360, 16718478, 4248724, 9717440, 1808231059, 938329961, 2220514623, 32218645, 152444267, 35560929, 25890631, 15013853, 280035, 13121650100, 1904031402, 1233429184, 320332406, 159617412, 95833714, 64948112, 14367450, 2442328, 13825525845, 1948595659, 359735969, 179083959, 276153085, 21919523, 46644201, 9539815, 2243537]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q := Explode([G.1, G.3, G.6, G.8, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22]); AssignNames(~G, ["a", "a2", "b", "b2", "b6", "c", "c2", "d", "d2", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q"]);
 
Copy content gap:G := PcGroupCode(12736091497826266938740665691907885919313134834056150603559951550131011384072879929853413596227833472548173464271437066721296122567780182072740117672770830773037058699222752009985120224277742010223196450567313934029351420800136356519842008223528571838846388299751804882395396134597780990943165038432476698414418010654968499034414731436275857568060331930684104865276321060679633394115098458017259108919811746384939443293193502688246566705175573900092173765158221274796944210779179502150288712267526240356712670327201444343893978530156569294592683523231517270277741232902833698876176040356064343855418014170179985773406511274457630058842774588597723385609592211280294238792707671109919932732235020127639311458822500305621573446388958057578622817120603521235766386234275196631038807518340191434067800093286222718493027096119094094437097148714185018406399224190471513354526830046553109346340867745162456675662209640485813935328302340166907586074486862262072203805704681198135982376393820206848723160181570386781835513725413076975138213964910472452677156348363277970185999240341090735148728538214009651584462090476286542855404035372111640050609931030361615703385853604378156307699823098293821440,31850496); a := G.1; b := G.3; c := G.6; d := G.8; e := G.10; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17; m := G.18; n := G.19; o := G.20; p := G.21; q := G.22;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12736091497826266938740665691907885919313134834056150603559951550131011384072879929853413596227833472548173464271437066721296122567780182072740117672770830773037058699222752009985120224277742010223196450567313934029351420800136356519842008223528571838846388299751804882395396134597780990943165038432476698414418010654968499034414731436275857568060331930684104865276321060679633394115098458017259108919811746384939443293193502688246566705175573900092173765158221274796944210779179502150288712267526240356712670327201444343893978530156569294592683523231517270277741232902833698876176040356064343855418014170179985773406511274457630058842774588597723385609592211280294238792707671109919932732235020127639311458822500305621573446388958057578622817120603521235766386234275196631038807518340191434067800093286222718493027096119094094437097148714185018406399224190471513354526830046553109346340867745162456675662209640485813935328302340166907586074486862262072203805704681198135982376393820206848723160181570386781835513725413076975138213964910472452677156348363277970185999240341090735148728538214009651584462090476286542855404035372111640050609931030361615703385853604378156307699823098293821440,31850496)'); a = G.1; b = G.3; c = G.6; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(12736091497826266938740665691907885919313134834056150603559951550131011384072879929853413596227833472548173464271437066721296122567780182072740117672770830773037058699222752009985120224277742010223196450567313934029351420800136356519842008223528571838846388299751804882395396134597780990943165038432476698414418010654968499034414731436275857568060331930684104865276321060679633394115098458017259108919811746384939443293193502688246566705175573900092173765158221274796944210779179502150288712267526240356712670327201444343893978530156569294592683523231517270277741232902833698876176040356064343855418014170179985773406511274457630058842774588597723385609592211280294238792707671109919932732235020127639311458822500305621573446388958057578622817120603521235766386234275196631038807518340191434067800093286222718493027096119094094437097148714185018406399224190471513354526830046553109346340867745162456675662209640485813935328302340166907586074486862262072203805704681198135982376393820206848723160181570386781835513725413076975138213964910472452677156348363277970185999240341090735148728538214009651584462090476286542855404035372111640050609931030361615703385853604378156307699823098293821440,31850496)'); a = G.1; b = G.3; c = G.6; d = G.8; e = G.10; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17; m = G.18; n = G.19; o = G.20; p = G.21; q = G.22;
 
Permutation group:Degree $36$ $\langle(1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33), (1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32), (1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28) >;
 
Copy content gap:G := Group( (1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33), (1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32), (1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28) );
 
Copy content sage:G = PermutationGroup(['(1,12,5,9,4,8,2,11,6,10,3,7)(13,16,14,15)(19,23)(20,24)(21,22)(25,36)(26,35)(27,31)(28,32)(29,34,30,33)', '(1,22,8,28,18,36,6,20,9,30,16,33,4,23,12,25,14,31)(2,21,7,27,17,35,5,19,10,29,15,34,3,24,11,26,13,32)', '(1,2)(3,6,4,5)(7,15,11,13,9,18,8,16,12,14,10,17)(19,36,24,31,22,34,20,35,23,32,21,33)(25,30,26,29)(27,28)'])
 
Transitive group: 36T70179 more information
Direct product: $C_2$ $\, \times\, $ $(C_2^6.A_4^3.(C_6\times S_4))$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^{12}.C_6^3)$ . $S_3^2$ $C_2^{15}$ . $(C_3^3.S_3^2)$ $C_2^{12}$ . $(C_6^3.S_3^2)$ $(C_2^{12}.C_3.C_6^3)$ . $D_6$ (4) all 66

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{5}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 100 normal subgroups (64 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^6.A_4^3.(C_6\times S_4)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^{12}.C_6^2.C_3^2$ $G/G' \simeq$ $C_2^2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^{12}.(C_6^3.S_3^2)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{15}$ $G/\operatorname{Fit} \simeq$ $C_3^3.S_3^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^{12}.(C_6^3.S_3^2)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^{15}$ $G/\operatorname{soc} \simeq$ $C_3^3.S_3^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{15}.C_2^2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4.C_3$

Subgroup diagram and profile

Series

Derived series $C_2^{12}.(C_6^3.S_3^2)$ $\rhd$ $C_2^{12}.C_6^2.C_3^2$ $\rhd$ $C_2^{12}.C_6.C_2$ $\rhd$ $C_2^{12}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^{12}.(C_6^3.S_3^2)$ $\rhd$ $C_2^{14}.C_3.\He_3.C_6.C_2$ $\rhd$ $C_2^{12}.C_6^2.C_3^3.C_2$ $\rhd$ $C_2^{12}.C_6^2.C_3^3$ $\rhd$ $C_2^{12}.C_6^2.C_3^2$ $\rhd$ $C_2^{14}.C_3^2.C_3$ $\rhd$ $C_2^{12}.C_6^2$ $\rhd$ $C_2^{12}.C_6.C_2$ $\rhd$ $C_2^{12}.C_3$ $\rhd$ $C_2^{12}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^{12}.(C_6^3.S_3^2)$ $\rhd$ $C_2^{12}.C_6^2.C_3^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 4 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $768 \times 768$ character table is not available for this group.

Rational character table

The $512 \times 512$ rational character table is not available for this group.