Show commands: Magma
Group invariants
| Abstract group: | $C_3^8:C_2^3.D_4^2:D_4$ |
| |
| Order: | $26873856=2^{12} \cdot 3^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $69301$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25)$, $(1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19)$, $(1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29)$, $(1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $D_{4}$ x 28, $C_2^3$ x 15 $16$: $QD_{16}$ x 4, $D_4\times C_2$ x 42, $C_2^4$ $32$: $Z_8 : Z_8^\times$ x 6, $C_2^2 \wr C_2$ x 28, $C_2^2 \times D_4$ x 7, 16T48 x 6 $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ x 2, 16T89 x 3, 16T105 x 7, 16T155 x 12, 32T277 $128$: $C_2 \wr C_2\wr C_2$ x 4, 16T241, 16T245, 16T255 x 3, 16T325, 32T1254 x 3 $256$: 16T509 x 2, 32T4223, 32T4446, 32T5588 $512$: 16T827, 16T919, 32T18625, 32T20853 $1024$: 32T40644, 32T66057 $4096$: 32T233153 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: None
Degree 9: None
Degree 12: None
Degree 18: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed