Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{8}=f^{24}=g^{3}=h^{3}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([20, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 116632160, 533355121, 101, 514318802, 162, 769813123, 168111423, 2223657604, 377153624, 218578044, 66592264, 43379284, 338115845, 963108505, 80765805, 371605025, 118311205, 345, 2239955206, 950920346, 422811246, 364825506, 221663206, 406, 3449589767, 850421787, 1020933167, 451217987, 212404567, 3161833928, 1758745468, 944219568, 78399428, 139045048, 71938188, 36877808, 2213788, 528, 2513126409, 1869068829, 411340849, 380160069, 160742489, 141699309, 47174529, 3716949, 64989, 5105879690, 1222886750, 457853490, 531097670, 15994970, 122682670, 77538690, 25515750, 16456610, 10898770, 650, 4595758091, 916093471, 186009651, 650035271, 14438491, 44954991, 20428931, 48620311, 6736491, 6844511, 711, 691991052, 1399440672, 551582772, 581085512, 429919452, 152813552, 41335972, 5154392, 16879372, 153072, 772, 3519774733, 237404193, 1127275573, 801274953, 466009693, 201873393, 69677573, 53913, 6962093, 6128793614, 3041280034, 182476854, 927590474, 233625694, 15552114, 11059334, 172954, 14688174, 43394, 324214, 230634, 3854, 2029322255, 2548039715, 1167851575, 1039564875, 260997215, 129392755, 129945735, 553115, 18616495, 138435, 2695895, 2707435, 11775, 1671516176, 4194631716, 1849295416, 964860236, 25611616, 235932916, 93255336, 1762716, 4553456, 17454436, 5712216, 2656316, 1454776, 6202368017, 2608957477, 1045693497, 465891917, 28777057, 241516917, 94801097, 5598877, 22084017, 18014597, 5668057, 3093357, 1501457, 3964354578, 765788198, 621667898, 496128078, 93705058, 314457718, 99736458, 17729438, 13789618, 14774598, 4979738, 2476318, 1231458, 6151577619, 926720039, 2200217659, 330598479, 207692899, 192544119, 23200139, 55987359, 41817779, 8841799, 2342619, 1387439, 737059]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.9, G.11, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4", "e", "e2", "f", "f2", "f4", "f8", "g", "h", "i", "j", "k", "l"]);
gap:G := PcGroupCode(461359137639994633796357187702424161967448582012212505856309735319489888136558519199321540882202280705433675467203675709003195396068449236987071876994471940906429998630653226864030286181378064418539778885734139375396115039242418294115360240009614286062820719388185978347611509466784801517032201099793495233668124306385019313475559518607291815185140333725293599644179049181852096771342305242479292257298858382916807845750917606982344809180273951681880104752703446353257480107346930371989166467898845976774480481691301577617955866512443305778384051629410531615878963131186206524177771960001741544268238873880694267750465758984360336806435844693371451168656672051010226636307024917296577152998406137063803251210399386176615560520188913923667092914810434886307927085744305591828673461962098754448934260982513147894061437629948223342737904252501426385513496244302026981168455464300150180721513144328583391817950718396903357496522906049630990377584706462625969393924753943031879297589071548332975868167887833170457483434138626391512068482094253121335551570309917763345006171022967176688452665061295415620449871049461260021664884341864824124885752172878775841209704922977217781445871395318498379415920731856187717042597950004890485099674825302433653050774887836281534955287791217345774676724579820477394816337023,26873856); a := G.1; b := G.2; c := G.5; d := G.6; e := G.9; f := G.11; g := G.15; h := G.16; i := G.17; j := G.18; k := G.19; l := G.20;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(461359137639994633796357187702424161967448582012212505856309735319489888136558519199321540882202280705433675467203675709003195396068449236987071876994471940906429998630653226864030286181378064418539778885734139375396115039242418294115360240009614286062820719388185978347611509466784801517032201099793495233668124306385019313475559518607291815185140333725293599644179049181852096771342305242479292257298858382916807845750917606982344809180273951681880104752703446353257480107346930371989166467898845976774480481691301577617955866512443305778384051629410531615878963131186206524177771960001741544268238873880694267750465758984360336806435844693371451168656672051010226636307024917296577152998406137063803251210399386176615560520188913923667092914810434886307927085744305591828673461962098754448934260982513147894061437629948223342737904252501426385513496244302026981168455464300150180721513144328583391817950718396903357496522906049630990377584706462625969393924753943031879297589071548332975868167887833170457483434138626391512068482094253121335551570309917763345006171022967176688452665061295415620449871049461260021664884341864824124885752172878775841209704922977217781445871395318498379415920731856187717042597950004890485099674825302433653050774887836281534955287791217345774676724579820477394816337023,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(461359137639994633796357187702424161967448582012212505856309735319489888136558519199321540882202280705433675467203675709003195396068449236987071876994471940906429998630653226864030286181378064418539778885734139375396115039242418294115360240009614286062820719388185978347611509466784801517032201099793495233668124306385019313475559518607291815185140333725293599644179049181852096771342305242479292257298858382916807845750917606982344809180273951681880104752703446353257480107346930371989166467898845976774480481691301577617955866512443305778384051629410531615878963131186206524177771960001741544268238873880694267750465758984360336806435844693371451168656672051010226636307024917296577152998406137063803251210399386176615560520188913923667092914810434886307927085744305591828673461962098754448934260982513147894061437629948223342737904252501426385513496244302026981168455464300150180721513144328583391817950718396903357496522906049630990377584706462625969393924753943031879297589071548332975868167887833170457483434138626391512068482094253121335551570309917763345006171022967176688452665061295415620449871049461260021664884341864824124885752172878775841209704922977217781445871395318498379415920731856187717042597950004890485099674825302433653050774887836281534955287791217345774676724579820477394816337023,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
|
Permutation group: | Degree $36$
$\langle(1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25), (1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19), (1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29), (1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17) >;
gap:G := Group( (1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25), (1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19), (1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29), (1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17) );
sage:G = PermutationGroup(['(1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25)', '(1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19)', '(1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29)', '(1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17)'])
|
Transitive group: |
36T69301 |
|
|
|
more information |
Direct product: |
not isomorphic to a non-trivial direct product |
Semidirect product: |
not computed |
Trans. wreath product: |
not computed |
Possibly split product: |
$(C_3^8.C_4^2.C_2^5)$ . $D_4$ (28) |
$(C_3^8:C_8.D_4:D_8)$ . $C_2^2$ |
$(C_3^8:C_2^3)$ . $(D_4^2:D_4)$ |
$(C_3^8.C_4^3.C_2^4)$ . $C_2^2$ (7) |
all 83 |
Elements of the group are displayed as permutations of degree 36.
The $234 \times 234$ character table is not available for this group.
The $197 \times 197$ rational character table is not available for this group.