Properties

Label 26873856.ua
Order \( 2^{12} \cdot 3^{8} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{13} \cdot 3^{8} \)
$\card{\mathrm{Out}(G)}$ \( 2 \)
Perm deg. $36$
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25), (1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19), (1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29), (1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17) >;
 
Copy content gap:G := Group( (1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25), (1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19), (1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29), (1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17) );
 
Copy content sage:G = PermutationGroup(['(1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25)', '(1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19)', '(1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29)', '(1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(461359137639994633796357187702424161967448582012212505856309735319489888136558519199321540882202280705433675467203675709003195396068449236987071876994471940906429998630653226864030286181378064418539778885734139375396115039242418294115360240009614286062820719388185978347611509466784801517032201099793495233668124306385019313475559518607291815185140333725293599644179049181852096771342305242479292257298858382916807845750917606982344809180273951681880104752703446353257480107346930371989166467898845976774480481691301577617955866512443305778384051629410531615878963131186206524177771960001741544268238873880694267750465758984360336806435844693371451168656672051010226636307024917296577152998406137063803251210399386176615560520188913923667092914810434886307927085744305591828673461962098754448934260982513147894061437629948223342737904252501426385513496244302026981168455464300150180721513144328583391817950718396903357496522906049630990377584706462625969393924753943031879297589071548332975868167887833170457483434138626391512068482094253121335551570309917763345006171022967176688452665061295415620449871049461260021664884341864824124885752172878775841209704922977217781445871395318498379415920731856187717042597950004890485099674825302433653050774887836281534955287791217345774676724579820477394816337023,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 

Group information

Description:$C_3^8:C_2^3.D_4^2:D_4$
Order: \(26873856\)\(\medspace = 2^{12} \cdot 3^{8} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^8.C_2.C_4^3.C_2^5.C_2$, of order \(53747712\)\(\medspace = 2^{13} \cdot 3^{8} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 8
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16 24
Elements 1 28503 6560 2139048 1382112 8812800 4841856 6718464 2944512 26873856
Conjugacy classes   1 12 10 35 43 64 32 12 25 234
Divisions 1 12 10 34 43 45 29 6 17 197

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 32 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid d^{8}=f^{24}=g^{3}=h^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([20, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 116632160, 533355121, 101, 514318802, 162, 769813123, 168111423, 2223657604, 377153624, 218578044, 66592264, 43379284, 338115845, 963108505, 80765805, 371605025, 118311205, 345, 2239955206, 950920346, 422811246, 364825506, 221663206, 406, 3449589767, 850421787, 1020933167, 451217987, 212404567, 3161833928, 1758745468, 944219568, 78399428, 139045048, 71938188, 36877808, 2213788, 528, 2513126409, 1869068829, 411340849, 380160069, 160742489, 141699309, 47174529, 3716949, 64989, 5105879690, 1222886750, 457853490, 531097670, 15994970, 122682670, 77538690, 25515750, 16456610, 10898770, 650, 4595758091, 916093471, 186009651, 650035271, 14438491, 44954991, 20428931, 48620311, 6736491, 6844511, 711, 691991052, 1399440672, 551582772, 581085512, 429919452, 152813552, 41335972, 5154392, 16879372, 153072, 772, 3519774733, 237404193, 1127275573, 801274953, 466009693, 201873393, 69677573, 53913, 6962093, 6128793614, 3041280034, 182476854, 927590474, 233625694, 15552114, 11059334, 172954, 14688174, 43394, 324214, 230634, 3854, 2029322255, 2548039715, 1167851575, 1039564875, 260997215, 129392755, 129945735, 553115, 18616495, 138435, 2695895, 2707435, 11775, 1671516176, 4194631716, 1849295416, 964860236, 25611616, 235932916, 93255336, 1762716, 4553456, 17454436, 5712216, 2656316, 1454776, 6202368017, 2608957477, 1045693497, 465891917, 28777057, 241516917, 94801097, 5598877, 22084017, 18014597, 5668057, 3093357, 1501457, 3964354578, 765788198, 621667898, 496128078, 93705058, 314457718, 99736458, 17729438, 13789618, 14774598, 4979738, 2476318, 1231458, 6151577619, 926720039, 2200217659, 330598479, 207692899, 192544119, 23200139, 55987359, 41817779, 8841799, 2342619, 1387439, 737059]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.6, G.9, G.11, G.15, G.16, G.17, G.18, G.19, G.20]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "d", "d2", "d4", "e", "e2", "f", "f2", "f4", "f8", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(461359137639994633796357187702424161967448582012212505856309735319489888136558519199321540882202280705433675467203675709003195396068449236987071876994471940906429998630653226864030286181378064418539778885734139375396115039242418294115360240009614286062820719388185978347611509466784801517032201099793495233668124306385019313475559518607291815185140333725293599644179049181852096771342305242479292257298858382916807845750917606982344809180273951681880104752703446353257480107346930371989166467898845976774480481691301577617955866512443305778384051629410531615878963131186206524177771960001741544268238873880694267750465758984360336806435844693371451168656672051010226636307024917296577152998406137063803251210399386176615560520188913923667092914810434886307927085744305591828673461962098754448934260982513147894061437629948223342737904252501426385513496244302026981168455464300150180721513144328583391817950718396903357496522906049630990377584706462625969393924753943031879297589071548332975868167887833170457483434138626391512068482094253121335551570309917763345006171022967176688452665061295415620449871049461260021664884341864824124885752172878775841209704922977217781445871395318498379415920731856187717042597950004890485099674825302433653050774887836281534955287791217345774676724579820477394816337023,26873856); a := G.1; b := G.2; c := G.5; d := G.6; e := G.9; f := G.11; g := G.15; h := G.16; i := G.17; j := G.18; k := G.19; l := G.20;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(461359137639994633796357187702424161967448582012212505856309735319489888136558519199321540882202280705433675467203675709003195396068449236987071876994471940906429998630653226864030286181378064418539778885734139375396115039242418294115360240009614286062820719388185978347611509466784801517032201099793495233668124306385019313475559518607291815185140333725293599644179049181852096771342305242479292257298858382916807845750917606982344809180273951681880104752703446353257480107346930371989166467898845976774480481691301577617955866512443305778384051629410531615878963131186206524177771960001741544268238873880694267750465758984360336806435844693371451168656672051010226636307024917296577152998406137063803251210399386176615560520188913923667092914810434886307927085744305591828673461962098754448934260982513147894061437629948223342737904252501426385513496244302026981168455464300150180721513144328583391817950718396903357496522906049630990377584706462625969393924753943031879297589071548332975868167887833170457483434138626391512068482094253121335551570309917763345006171022967176688452665061295415620449871049461260021664884341864824124885752172878775841209704922977217781445871395318498379415920731856187717042597950004890485099674825302433653050774887836281534955287791217345774676724579820477394816337023,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(461359137639994633796357187702424161967448582012212505856309735319489888136558519199321540882202280705433675467203675709003195396068449236987071876994471940906429998630653226864030286181378064418539778885734139375396115039242418294115360240009614286062820719388185978347611509466784801517032201099793495233668124306385019313475559518607291815185140333725293599644179049181852096771342305242479292257298858382916807845750917606982344809180273951681880104752703446353257480107346930371989166467898845976774480481691301577617955866512443305778384051629410531615878963131186206524177771960001741544268238873880694267750465758984360336806435844693371451168656672051010226636307024917296577152998406137063803251210399386176615560520188913923667092914810434886307927085744305591828673461962098754448934260982513147894061437629948223342737904252501426385513496244302026981168455464300150180721513144328583391817950718396903357496522906049630990377584706462625969393924753943031879297589071548332975868167887833170457483434138626391512068482094253121335551570309917763345006171022967176688452665061295415620449871049461260021664884341864824124885752172878775841209704922977217781445871395318498379415920731856187717042597950004890485099674825302433653050774887836281534955287791217345774676724579820477394816337023,26873856)'); a = G.1; b = G.2; c = G.5; d = G.6; e = G.9; f = G.11; g = G.15; h = G.16; i = G.17; j = G.18; k = G.19; l = G.20;
 
Permutation group:Degree $36$ $\langle(1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25), (1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19), (1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29), (1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17) >;
 
Copy content gap:G := Group( (1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25), (1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19), (1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29), (1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17) );
 
Copy content sage:G = PermutationGroup(['(1,7,9,3)(2,4,8,6)(10,31,14,28,17,36,13,30)(11,32,12,33,16,35,18,34)(15,29)(19,24,26)(20,22,27)(21,23,25)', '(1,29)(2,33,3,34)(4,32,7,35)(5,36,9,31)(6,28,8,30)(10,23,13,26,17,27,14,24)(11,21,18,22,16,20,12,25)(15,19)', '(1,14,23,36,9,17,26,31,2,13,25,32,6,10,22,34)(3,15,21,28)(4,12,27,33,7,16,19,30,8,18,24,35,5,11,20,29)', '(1,31,25,15,9,36,24,10)(2,34,19,11,8,33,21,14)(3,28,22,16,7,30,27,18)(4,35,26,12,6,32,23,13)(5,29,20,17)'])
 
Transitive group: 36T69301 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not computed
Possibly split product: $(C_3^8.C_4^2.C_2^5)$ . $D_4$ (28) $(C_3^8:C_8.D_4:D_8)$ . $C_2^2$ $(C_3^8:C_2^3)$ . $(D_4^2:D_4)$ $(C_3^8.C_4^3.C_2^4)$ . $C_2^2$ (7) all 83

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 242 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^8:C_2^3.D_4^2:D_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^8.C_4^3.C_2^2$ $G/G' \simeq$ $C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^8:C_2^3.D_4^2:D_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^8$ $G/\operatorname{Fit} \simeq$ $(C_2\times C_4\times C_8).C_2^5.C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^8:C_2^3.D_4^2:D_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^8$ $G/\operatorname{soc} \simeq$ $(C_2\times C_4\times C_8).C_2^5.C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_4^3.C_2^5.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^8$

Subgroup diagram and profile

Series

Derived series $C_3^8:C_2^3.D_4^2:D_4$ $\rhd$ $C_3^8.C_4^3.C_2^2$ $\rhd$ $C_3^8:(C_2\times C_4)$ $\rhd$ $C_3^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^8:C_2^3.D_4^2:D_4$ $\rhd$ $C_3^8.C_2^3.C_2^4.C_2^4$ $\rhd$ $C_3^8.C_2^3.C_2^4.C_2^3$ $\rhd$ $C_3^8.C_2^3.C_2^4.C_2^2$ $\rhd$ $C_3^8.C_4^3.C_2^2$ $\rhd$ $C_3^8.C_4^3.C_2$ $\rhd$ $C_3^8.C_4^3$ $\rhd$ $C_3^8.C_2^3.C_2^2$ $\rhd$ $C_3^8:(C_2^2\times C_4)$ $\rhd$ $C_3^8:(C_2\times C_4)$ $\rhd$ $C_3^7.D_6$ $\rhd$ $C_3^8.C_2$ $\rhd$ $C_3^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^8:C_2^3.D_4^2:D_4$ $\rhd$ $C_3^8.C_4^3.C_2^2$ $\rhd$ $C_3^8.C_2^3.C_2^2$ $\rhd$ $C_3^8:(C_2\times C_4)$ $\rhd$ $C_3^7.D_6$ $\rhd$ $C_3^8.C_2$ $\rhd$ $C_3^8$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $234 \times 234$ character table is not available for this group.

Rational character table

The $197 \times 197$ rational character table is not available for this group.