Show commands: Magma
Group invariants
| Abstract group: | $C_2\times C_2^{10}.C_6^2:D_{12}$ |
| |
| Order: | $1769472=2^{16} \cdot 3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $42303$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,34,17,10,4,35,14,12,5,31,15,8)(2,33,18,9,3,36,13,11,6,32,16,7)(19,26,23,30,22,28,20,25,24,29,21,27)$, $(1,7)(2,8)(3,11,4,12)(5,9,6,10)(13,35)(14,36)(15,34)(16,33)(17,32)(18,31)(19,29)(20,30)(21,28,22,27)(23,26,24,25)$, $(1,4,6,2,3,5)(7,23,34)(8,24,33)(9,19,36)(10,20,35)(11,21,32,12,22,31)(13,15,18,14,16,17)(25,27,29,26,28,30)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 3 $16$: $D_4\times C_2$ $24$: $S_4$, $S_3 \times C_2^2$, $D_{12}$ x 2 $48$: $S_4\times C_2$ x 3, 24T29 $72$: $C_3^2:D_4$ $96$: 12T48, 12T54 x 2 $144$: 12T77 $192$: $V_4^2:(S_3\times C_2)$, 24T394 $216$: 12T118 $384$: 12T136, 12T152 x 2 $432$: 24T1304 $768$: 24T2479 $864$: 24T2660 $1728$: 36T2513 $3456$: 24T7225 $6912$: 36T6965 $55296$: 16T1858 $110592$: 24T17883 $221184$: 24T19224 $442368$: 36T29588 $884736$: 24T21392 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$, $C_3^2:D_4$
Degree 9: None
Degree 12: None
Degree 18: 18T104
Low degree siblings
36T42302 x 4, 36T42303 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed