Properties

Label 1769472.em
Order \( 2^{16} \cdot 3^{3} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,28,9,13,23,2,31,27,10,14,24)(3,36,29,8,15,21)(4,35,30,7,16,22)(5,33,25,11,18,19,6,34,26,12,17,20), (1,19,25,9,4,21,27,11,5,24,29,7)(2,20,26,10,3,22,28,12,6,23,30,8)(13,34,18,31,16,35)(14,33,17,32,15,36), (1,2)(3,5)(4,6)(7,12)(8,11)(9,10)(13,28)(14,27)(15,25,16,26)(17,29,18,30)(19,21)(20,22)(23,24)(31,32)(33,36)(34,35) >;
 
Copy content gap:G := Group( (1,32,28,9,13,23,2,31,27,10,14,24)(3,36,29,8,15,21)(4,35,30,7,16,22)(5,33,25,11,18,19,6,34,26,12,17,20), (1,19,25,9,4,21,27,11,5,24,29,7)(2,20,26,10,3,22,28,12,6,23,30,8)(13,34,18,31,16,35)(14,33,17,32,15,36), (1,2)(3,5)(4,6)(7,12)(8,11)(9,10)(13,28)(14,27)(15,25,16,26)(17,29,18,30)(19,21)(20,22)(23,24)(31,32)(33,36)(34,35) );
 
Copy content sage:G = PermutationGroup(['(1,32,28,9,13,23,2,31,27,10,14,24)(3,36,29,8,15,21)(4,35,30,7,16,22)(5,33,25,11,18,19,6,34,26,12,17,20)', '(1,19,25,9,4,21,27,11,5,24,29,7)(2,20,26,10,3,22,28,12,6,23,30,8)(13,34,18,31,16,35)(14,33,17,32,15,36)', '(1,2)(3,5)(4,6)(7,12)(8,11)(9,10)(13,28)(14,27)(15,25,16,26)(17,29,18,30)(19,21)(20,22)(23,24)(31,32)(33,36)(34,35)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(446617966629071860162201764718414078258204274306681769149663564751526490276991730818014536153874050839433237926807813886577084590898666334280766186655458505487936241889213829978697849015773658156739466298185276159891774498379149182569602387358815789052627835554944338333402958923091678608666241756688069807453470447048575519634742477426374623470445703208879423918092410490532379486583987559029128050441961883997480416508723929316757701782529973122277548136911840457021302168429145431747262968008808582445435445381123405665731901948262273209471805790308689820704403690309341241490037518336499819873127051670534664014815444821706543048697486785159423876802865226938077850685541064763524392364189216691600628993629303699942764488059024496437248,1769472)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19;
 

Group information

Description:$C_2\times C_2^{10}.C_6^2:D_{12}$
Order: \(1769472\)\(\medspace = 2^{16} \cdot 3^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2\times C_2^8.C_6^2.A_4.C_2^5.C_2$, of order \(14155776\)\(\medspace = 2^{19} \cdot 3^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 16, $C_3$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12
Elements 1 17407 19520 396288 433088 110592 792576 1769472
Conjugacy classes   1 113 5 142 75 8 40 384
Divisions 1 113 5 142 63 6 30 360
Autjugacy classes 1 89 5 72 49 3 11 230

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o \mid b^{12}=c^{6}=d^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([19, 2, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 9363048, 37233237, 96, 9548414, 154, 83657155, 51984004, 60643463, 39235422, 7715866, 270, 188094533, 804408, 495259, 4470002, 78845598, 29310565, 43161470, 14080374, 2057326, 2152706, 386, 2641159, 50174618, 744237, 31031776, 34739, 132821864, 15623955, 69846022, 129341, 7304, 3219, 32421609, 112490668, 17626727, 40147446, 1350985, 716594, 2153583, 1089412, 65187946, 129743885, 20021412, 44184757, 1471028, 810816, 2367676, 1193951, 364435211, 128438814, 53315113, 47033960, 229911, 851686, 2596589, 1310004, 81735276, 79387807, 1227146, 50417709, 2827782, 1402117, 214330045, 28048136, 80237355, 11421844, 3796973, 4457736, 60775, 31268, 153284414, 17113713, 5822602, 10883366, 5053140, 4940299, 360779919, 27261538, 130211765, 20503656, 913915, 809966, 235425, 122356, 197745784, 35453807, 93070566, 24753178, 7476896, 4741428, 498196, 254027, 366848369, 217405332, 81813295, 63606944, 11727273, 1997734, 2833943, 1430394, 346213458, 127958653, 50379050, 42613959, 23236942, 9516434, 1910544, 1134052]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o := Explode([G.1, G.2, G.5, G.7, G.9, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17, G.18, G.19]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "c2", "d", "d2", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o"]);
 
Copy content gap:G := PcGroupCode(446617966629071860162201764718414078258204274306681769149663564751526490276991730818014536153874050839433237926807813886577084590898666334280766186655458505487936241889213829978697849015773658156739466298185276159891774498379149182569602387358815789052627835554944338333402958923091678608666241756688069807453470447048575519634742477426374623470445703208879423918092410490532379486583987559029128050441961883997480416508723929316757701782529973122277548136911840457021302168429145431747262968008808582445435445381123405665731901948262273209471805790308689820704403690309341241490037518336499819873127051670534664014815444821706543048697486785159423876802865226938077850685541064763524392364189216691600628993629303699942764488059024496437248,1769472); a := G.1; b := G.2; c := G.5; d := G.7; e := G.9; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17; n := G.18; o := G.19;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(446617966629071860162201764718414078258204274306681769149663564751526490276991730818014536153874050839433237926807813886577084590898666334280766186655458505487936241889213829978697849015773658156739466298185276159891774498379149182569602387358815789052627835554944338333402958923091678608666241756688069807453470447048575519634742477426374623470445703208879423918092410490532379486583987559029128050441961883997480416508723929316757701782529973122277548136911840457021302168429145431747262968008808582445435445381123405665731901948262273209471805790308689820704403690309341241490037518336499819873127051670534664014815444821706543048697486785159423876802865226938077850685541064763524392364189216691600628993629303699942764488059024496437248,1769472)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(446617966629071860162201764718414078258204274306681769149663564751526490276991730818014536153874050839433237926807813886577084590898666334280766186655458505487936241889213829978697849015773658156739466298185276159891774498379149182569602387358815789052627835554944338333402958923091678608666241756688069807453470447048575519634742477426374623470445703208879423918092410490532379486583987559029128050441961883997480416508723929316757701782529973122277548136911840457021302168429145431747262968008808582445435445381123405665731901948262273209471805790308689820704403690309341241490037518336499819873127051670534664014815444821706543048697486785159423876802865226938077850685541064763524392364189216691600628993629303699942764488059024496437248,1769472)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17; n = G.18; o = G.19;
 
Permutation group:Degree $36$ $\langle(1,32,28,9,13,23,2,31,27,10,14,24)(3,36,29,8,15,21)(4,35,30,7,16,22)(5,33,25,11,18,19,6,34,26,12,17,20) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,28,9,13,23,2,31,27,10,14,24)(3,36,29,8,15,21)(4,35,30,7,16,22)(5,33,25,11,18,19,6,34,26,12,17,20), (1,19,25,9,4,21,27,11,5,24,29,7)(2,20,26,10,3,22,28,12,6,23,30,8)(13,34,18,31,16,35)(14,33,17,32,15,36), (1,2)(3,5)(4,6)(7,12)(8,11)(9,10)(13,28)(14,27)(15,25,16,26)(17,29,18,30)(19,21)(20,22)(23,24)(31,32)(33,36)(34,35) >;
 
Copy content gap:G := Group( (1,32,28,9,13,23,2,31,27,10,14,24)(3,36,29,8,15,21)(4,35,30,7,16,22)(5,33,25,11,18,19,6,34,26,12,17,20), (1,19,25,9,4,21,27,11,5,24,29,7)(2,20,26,10,3,22,28,12,6,23,30,8)(13,34,18,31,16,35)(14,33,17,32,15,36), (1,2)(3,5)(4,6)(7,12)(8,11)(9,10)(13,28)(14,27)(15,25,16,26)(17,29,18,30)(19,21)(20,22)(23,24)(31,32)(33,36)(34,35) );
 
Copy content sage:G = PermutationGroup(['(1,32,28,9,13,23,2,31,27,10,14,24)(3,36,29,8,15,21)(4,35,30,7,16,22)(5,33,25,11,18,19,6,34,26,12,17,20)', '(1,19,25,9,4,21,27,11,5,24,29,7)(2,20,26,10,3,22,28,12,6,23,30,8)(13,34,18,31,16,35)(14,33,17,32,15,36)', '(1,2)(3,5)(4,6)(7,12)(8,11)(9,10)(13,28)(14,27)(15,25,16,26)(17,29,18,30)(19,21)(20,22)(23,24)(31,32)(33,36)(34,35)'])
 
Transitive group: 36T42302 36T42303 more information
Direct product: $C_2$ $\, \times\, $ $(C_2^{10}.C_6^2:D_{12})$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{13}$ . $(C_3^2:D_{12})$ $C_2^{11}$ . $(C_6^2:D_{12})$ $(C_2^8.A_4^2:C_4)$ . $D_6$ $(C_2^{12}.C_6:S_3^2)$ . $C_2$ all 41

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 54 normal subgroups (40 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^{10}.C_6^2:D_{12}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^8.C_6^2.A_4.C_2$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^2$ $G/\Phi \simeq$ $C_2^9.C_6^2:D_{12}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{13}$ $G/\operatorname{Fit} \simeq$ $C_3^2:D_{12}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2\times C_2^{10}.C_6^2:D_{12}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^{11}$ $G/\operatorname{soc} \simeq$ $C_6^2:D_{12}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^{10}.C_2^5.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^3$

Subgroup diagram and profile

Series

Derived series $C_2\times C_2^{10}.C_6^2:D_{12}$ $\rhd$ $C_2^8.C_6^2.A_4.C_2$ $\rhd$ $C_2^8.C_6^2.C_2^2$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2\times C_2^{10}.C_6^2:D_{12}$ $\rhd$ $C_2^{12}.C_3^3.C_2^3$ $\rhd$ $C_2^8.C_6^2.A_4.C_2^2$ $\rhd$ $C_2^8.C_6^2.A_4.C_2$ $\rhd$ $C_2^{12}.C_3^3$ $\rhd$ $C_2^8.C_6^2.C_2^2$ $\rhd$ $C_2^{10}:C_3^2$ $\rhd$ $C_2^4:A_4^2$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2\times C_2^{10}.C_6^2:D_{12}$ $\rhd$ $C_2^8.C_6^2.A_4.C_2$ $\rhd$ $C_2^{12}.C_3^3$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 6 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $384 \times 384$ character table is not available for this group.

Rational character table

The $360 \times 360$ rational character table is not available for this group.