Show commands: Magma
Group invariants
| Abstract group: | $C_2^5.A_4^3:A_4$ |
| |
| Order: | $663552=2^{13} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $33629$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,5,2,6)(3,8,4,7)(9,12)(10,11)(17,18)(19,20)(25,33,26,34)(27,36,28,35)(29,31)(30,32)$, $(1,27,20,7,34,22,12,29,13,2,28,19,8,33,21,11,30,14)(3,25,18,6,35,24,9,31,16,4,26,17,5,36,23,10,32,15)$, $(1,11,8,2,12,7)(3,10,5,4,9,6)(13,23,14,24)(15,22,16,21)(17,20)(18,19)(25,29,26,30)(27,31,28,32)(33,36)(34,35)$, $(1,22,34,8,13,28,12,19,29)(2,21,33,7,14,27,11,20,30)(3,24,35,5,16,26,9,17,31)(4,23,36,6,15,25,10,18,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $12$: $A_4$ x 21 $24$: $A_4\times C_2$ x 21 $48$: $C_2^4:C_3$ x 21 $96$: 12T56 x 21 $192$: 24T390 $324$: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$ $384$: 24T1022 $648$: 18T199 $1296$: 18T322 x 5 $2592$: 18T400 x 5 $5184$: 36T6050 $10368$: 36T8827 $20736$: 12T284 $41472$: 18T699 $82944$: 18T786 x 5 $165888$: 18T839 x 5 $331776$: 36T28369 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 4: None
Degree 6: $A_4$
Degree 9: $((C_3 \times (C_3^2 : C_2)) : C_2) : C_3$
Degree 12: None
Low degree siblings
36T33629 x 1439, 36T33721 x 2880Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed