Properties

Label 663552.jo
Order \( 2^{13} \cdot 3^{4} \)
Exponent \( 2^{2} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 3 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{20} \cdot 3^{6} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{8} \cdot 3^{2} \cdot 5 \)
Perm deg. not computed
Trans deg. $36$
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,5,2,6)(3,8,4,7)(9,12)(10,11)(17,18)(19,20)(25,33,26,34)(27,36,28,35)(29,31)(30,32), (1,27,20,7,34,22,12,29,13,2,28,19,8,33,21,11,30,14)(3,25,18,6,35,24,9,31,16,4,26,17,5,36,23,10,32,15), (1,11,8,2,12,7)(3,10,5,4,9,6)(13,23,14,24)(15,22,16,21)(17,20)(18,19)(25,29,26,30)(27,31,28,32)(33,36)(34,35), (1,22,34,8,13,28,12,19,29)(2,21,33,7,14,27,11,20,30)(3,24,35,5,16,26,9,17,31)(4,23,36,6,15,25,10,18,32) >;
 
Copy content gap:G := Group( (1,5,2,6)(3,8,4,7)(9,12)(10,11)(17,18)(19,20)(25,33,26,34)(27,36,28,35)(29,31)(30,32), (1,27,20,7,34,22,12,29,13,2,28,19,8,33,21,11,30,14)(3,25,18,6,35,24,9,31,16,4,26,17,5,36,23,10,32,15), (1,11,8,2,12,7)(3,10,5,4,9,6)(13,23,14,24)(15,22,16,21)(17,20)(18,19)(25,29,26,30)(27,31,28,32)(33,36)(34,35), (1,22,34,8,13,28,12,19,29)(2,21,33,7,14,27,11,20,30)(3,24,35,5,16,26,9,17,31)(4,23,36,6,15,25,10,18,32) );
 
Copy content sage:G = PermutationGroup(['(1,5,2,6)(3,8,4,7)(9,12)(10,11)(17,18)(19,20)(25,33,26,34)(27,36,28,35)(29,31)(30,32)', '(1,27,20,7,34,22,12,29,13,2,28,19,8,33,21,11,30,14)(3,25,18,6,35,24,9,31,16,4,26,17,5,36,23,10,32,15)', '(1,11,8,2,12,7)(3,10,5,4,9,6)(13,23,14,24)(15,22,16,21)(17,20)(18,19)(25,29,26,30)(27,31,28,32)(33,36)(34,35)', '(1,22,34,8,13,28,12,19,29)(2,21,33,7,14,27,11,20,30)(3,24,35,5,16,26,9,17,31)(4,23,36,6,15,25,10,18,32)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4990169134448801261162736196645265778809485730607535028982380979297425175411647922870726514190555972295553547544113498712223172428965052932331032041970835871063339632721702062503041158037714891028671049267464099143949127539019887509723535492185190146012292830105810515943824317108909232917351264324546731441568838369565497666609639883745201994408726550048068482729721664539985755740699020125114406890186365583051481712965164514070286502145616900242439625684757064659046922241346898289760138132126212365683733593065681909107601864253131634625319671969750643214316369028298784116741376,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17;
 

Group information

Description:$C_2^5.A_4^3:A_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(3822059520\)\(\medspace = 2^{20} \cdot 3^{6} \cdot 5 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 9 12 18
Elements 1 15871 19160 41472 209192 147456 82944 147456 663552
Conjugacy classes   1 151 6 192 250 4 96 4 704
Divisions 1 151 4 192 236 2 96 2 684
Autjugacy classes 1 19 4 8 26 1 4 1 64

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m \mid d^{6}=e^{6}=f^{2}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 34, 8443986, 5485664, 10930645, 1189764, 16516251, 9434408, 353229, 190, 35226724, 6517821, 6977518, 1670832, 15184949, 3740566, 809103, 608996, 347383, 294, 42157422, 2837459, 962512, 4681041, 2127794, 41599687, 41753112, 3221609, 5077210, 590043, 715724, 92317, 398, 4766264, 10861801, 1233834, 1806683, 303016, 299361, 50600, 94296969, 45055466, 330540, 238757, 3154, 393321, 120004642, 22316607, 484748, 5735725, 121254, 885353, 437692, 68475467, 9517852, 528830, 176335, 73322508, 15466493, 1145710, 191007, 286496, 150265597, 68346966, 3495791, 8739424, 514161, 1555190, 711259, 54396, 37277, 90882014, 54198751, 2423568, 1652465, 1211842, 202059, 229616, 76633, 16980, 89538063, 13042976, 13865521, 14923074, 2232659, 2423620, 1028277, 133958, 96439, 40450768, 4494561, 1347419, 7921]); a,b,c,d,e,f,g,h,i,j,k,l,m := Explode([G.1, G.3, G.4, G.6, G.8, G.10, G.11, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "b", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j", "k", "l", "m"]);
 
Copy content gap:G := PcGroupCode(4990169134448801261162736196645265778809485730607535028982380979297425175411647922870726514190555972295553547544113498712223172428965052932331032041970835871063339632721702062503041158037714891028671049267464099143949127539019887509723535492185190146012292830105810515943824317108909232917351264324546731441568838369565497666609639883745201994408726550048068482729721664539985755740699020125114406890186365583051481712965164514070286502145616900242439625684757064659046922241346898289760138132126212365683733593065681909107601864253131634625319671969750643214316369028298784116741376,663552); a := G.1; b := G.3; c := G.4; d := G.6; e := G.8; f := G.10; g := G.11; h := G.12; i := G.13; j := G.14; k := G.15; l := G.16; m := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4990169134448801261162736196645265778809485730607535028982380979297425175411647922870726514190555972295553547544113498712223172428965052932331032041970835871063339632721702062503041158037714891028671049267464099143949127539019887509723535492185190146012292830105810515943824317108909232917351264324546731441568838369565497666609639883745201994408726550048068482729721664539985755740699020125114406890186365583051481712965164514070286502145616900242439625684757064659046922241346898289760138132126212365683733593065681909107601864253131634625319671969750643214316369028298784116741376,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(4990169134448801261162736196645265778809485730607535028982380979297425175411647922870726514190555972295553547544113498712223172428965052932331032041970835871063339632721702062503041158037714891028671049267464099143949127539019887509723535492185190146012292830105810515943824317108909232917351264324546731441568838369565497666609639883745201994408726550048068482729721664539985755740699020125114406890186365583051481712965164514070286502145616900242439625684757064659046922241346898289760138132126212365683733593065681909107601864253131634625319671969750643214316369028298784116741376,663552)'); a = G.1; b = G.3; c = G.4; d = G.6; e = G.8; f = G.10; g = G.11; h = G.12; i = G.13; j = G.14; k = G.15; l = G.16; m = G.17;
 
Permutation group:Degree $36$ $\langle(1,5,2,6)(3,8,4,7)(9,12)(10,11)(17,18)(19,20)(25,33,26,34)(27,36,28,35) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,5,2,6)(3,8,4,7)(9,12)(10,11)(17,18)(19,20)(25,33,26,34)(27,36,28,35)(29,31)(30,32), (1,27,20,7,34,22,12,29,13,2,28,19,8,33,21,11,30,14)(3,25,18,6,35,24,9,31,16,4,26,17,5,36,23,10,32,15), (1,11,8,2,12,7)(3,10,5,4,9,6)(13,23,14,24)(15,22,16,21)(17,20)(18,19)(25,29,26,30)(27,31,28,32)(33,36)(34,35), (1,22,34,8,13,28,12,19,29)(2,21,33,7,14,27,11,20,30)(3,24,35,5,16,26,9,17,31)(4,23,36,6,15,25,10,18,32) >;
 
Copy content gap:G := Group( (1,5,2,6)(3,8,4,7)(9,12)(10,11)(17,18)(19,20)(25,33,26,34)(27,36,28,35)(29,31)(30,32), (1,27,20,7,34,22,12,29,13,2,28,19,8,33,21,11,30,14)(3,25,18,6,35,24,9,31,16,4,26,17,5,36,23,10,32,15), (1,11,8,2,12,7)(3,10,5,4,9,6)(13,23,14,24)(15,22,16,21)(17,20)(18,19)(25,29,26,30)(27,31,28,32)(33,36)(34,35), (1,22,34,8,13,28,12,19,29)(2,21,33,7,14,27,11,20,30)(3,24,35,5,16,26,9,17,31)(4,23,36,6,15,25,10,18,32) );
 
Copy content sage:G = PermutationGroup(['(1,5,2,6)(3,8,4,7)(9,12)(10,11)(17,18)(19,20)(25,33,26,34)(27,36,28,35)(29,31)(30,32)', '(1,27,20,7,34,22,12,29,13,2,28,19,8,33,21,11,30,14)(3,25,18,6,35,24,9,31,16,4,26,17,5,36,23,10,32,15)', '(1,11,8,2,12,7)(3,10,5,4,9,6)(13,23,14,24)(15,22,16,21)(17,20)(18,19)(25,29,26,30)(27,31,28,32)(33,36)(34,35)', '(1,22,34,8,13,28,12,19,29)(2,21,33,7,14,27,11,20,30)(3,24,35,5,16,26,9,17,31)(4,23,36,6,15,25,10,18,32)'])
 
Transitive group: 36T33629 36T33721 more information
Direct product: $C_2$ $\, \times\, $ $(C_2^4.A_4^3:A_4)$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $A_4^3$ . $(C_2^5:A_4)$ $C_2^5$ . $(A_4^3:A_4)$ $C_2^8$ . $(C_6^3:A_4)$ $C_2^{11}$ . $(C_3^3:A_4)$ all 22

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{6} \simeq C_{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{10}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 118 normal subgroups (16 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^4.A_4^3:A_4$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^6.C_3^3.C_2^6$ $G/G' \simeq$ $C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_2^5.A_4^3:A_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{11}$ $G/\operatorname{Fit} \simeq$ $C_3^3:A_4$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^5.A_4^3:A_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^{11}$ $G/\operatorname{soc} \simeq$ $C_3^3:A_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\wr C_3$

Subgroup diagram and profile

Series

Derived series $C_2^5.A_4^3:A_4$ $\rhd$ $C_2^6.C_3^3.C_2^6$ $\rhd$ $A_4^3$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^5.A_4^3:A_4$ $\rhd$ $C_2^6.C_3^3.C_2^6.C_3$ $\rhd$ $C_2^6.C_3^3.C_2^6$ $\rhd$ $C_2^6.C_3^3.C_2^4$ $\rhd$ $C_2^6.C_3^3.C_2^2$ $\rhd$ $A_4^3$ $\rhd$ $C_2^6$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^5.A_4^3:A_4$ $\rhd$ $C_2^6.C_3^3.C_2^6$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 12 larger groups in the database.

This group is a maximal quotient of 6 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $704 \times 704$ character table is not available for this group.

Rational character table

The $684 \times 684$ rational character table is not available for this group.