Show commands: Magma
Group invariants
| Abstract group: | $A_4^2.S_4^2:D_4$ |
| |
| Order: | $663552=2^{13} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $33414$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,11,13,6,8,17)(2,12,14,5,7,18)(3,9,15,4,10,16)(19,34)(20,33)(21,31)(22,32)(23,36,24,35)(25,28,26,27)(29,30)$, $(1,33,14,27,8,21)(2,34,13,28,7,22)(3,31,15,25,10,19,4,32,16,26,9,20)(5,36,18,29,12,23,6,35,17,30,11,24)$, $(1,22,15,31,5,23,14,33,4,20,17,35)(2,21,16,32,6,24,13,34,3,19,18,36)(7,28,9,26,11,30,8,27,10,25,12,29)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ x 2 $8$: $D_{4}$ x 6, $C_2^3$ $12$: $D_{6}$ x 6 $16$: $D_4\times C_2$ x 3 $24$: $S_3 \times C_2^2$ x 2, $D_{12}$ x 2, $(C_6\times C_2):C_2$ x 2 $32$: $C_2^2 \wr C_2$ $36$: $S_3^2$ $48$: 12T28 x 4, 24T25, 24T29 $72$: $C_3^2:D_4$, 12T37, 12T38 x 2 $96$: 24T144, 24T145 $144$: 12T77, 12T81 x 2, 24T230 $288$: 12T125, 24T672 $432$: 12T156 x 2 $576$: $(A_4\wr C_2):C_2$ $864$: 24T2647, 24T2649 $1152$: $S_4\wr C_2$, 12T195, 12T196 x 2 $1296$: 12T217 $2304$: 12T235, 12T240 x 2, 24T5079 $2592$: 24T5256 $4608$: 12T260, 24T7509 $6912$: 24T9627 x 2 $13824$: 36T9787, 36T9788 $20736$: 24T12608, 24T12610 $41472$: 36T15412, 36T15418 $331776$: 32T2267336 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $S_3^2$, $C_3^2:D_4$
Degree 9: None
Degree 12: None
Degree 18: 18T289
Low degree siblings
36T33414 x 7, 36T33415 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed