Properties

Label 663552.hk
Order \( 2^{13} \cdot 3^{4} \)
Exponent \( 2^{3} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $20$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (2,3,5,7)(4,6,8)(9,11)(10,12)(13,18,14,20)(15,16)(17,19), (1,2,4,3,6,7)(5,8)(9,12,11,16)(10,14)(13,15)(17,20,19,18), (1,2)(3,4,7,8)(5,6)(9,10,13,17,20,16)(11,15,14,19,18,12) >;
 
Copy content gap:G := Group( (2,3,5,7)(4,6,8)(9,11)(10,12)(13,18,14,20)(15,16)(17,19), (1,2,4,3,6,7)(5,8)(9,12,11,16)(10,14)(13,15)(17,20,19,18), (1,2)(3,4,7,8)(5,6)(9,10,13,17,20,16)(11,15,14,19,18,12) );
 
Copy content sage:G = PermutationGroup(['(2,3,5,7)(4,6,8)(9,11)(10,12)(13,18,14,20)(15,16)(17,19)', '(1,2,4,3,6,7)(5,8)(9,12,11,16)(10,14)(13,15)(17,20,19,18)', '(1,2)(3,4,7,8)(5,6)(9,10,13,17,20,16)(11,15,14,19,18,12)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2319239737250797869169935239150149833365278330835854625253125246219089385918476194425503887458531757237303675070956501103384244705809360033196065229490095477835961604888379764269813514484638252509535990741672499379130248924159385828861878101177316295204785956257735907308279920452457978308700837535996905296992768160914990521060279961271715609928961006542396579899107924735614709827957473532406766430680585972547836450295535564850261417031120075197791996552227718857144212587685463695009566474578988700646899978788712955301754191102631586271329169677517221376716230559835367577918283418316974720,663552)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 

Group information

Description:$A_4^2.S_4^2:D_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^2\times A_4^2.A_4^2.C_2.C_2^5$, of order \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 24
Elements 1 10975 6560 117024 145760 27648 300288 55296 663552
Conjugacy classes   1 51 12 96 134 4 108 4 410
Divisions 1 51 12 96 132 4 102 2 400
Autjugacy classes 1 36 11 53 85 4 51 2 243

Minimal presentations

Permutation degree:$20$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid b^{12}=c^{6}=d^{6}=e^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 10658592, 17704685, 86, 28951070, 138, 31374659, 18551764, 7290981, 13391108, 5872450, 242, 35167973, 19701526, 11303679, 5684924, 22765182, 16112147, 826852, 9075711, 1558736, 957922, 346, 470023, 117528, 97961, 93082, 3339, 4802984, 15312265, 1222818, 3833627, 1261408, 214004, 4717, 450, 538569, 244826, 8665963, 3561900, 1187357, 47031, 31021066, 15510555, 121220, 181825, 3478, 5178, 119501579, 47060380, 23001453, 11236382, 881359, 495816, 18473, 11146, 92225964, 68739869, 34226758, 16540587, 859328, 393919, 294486, 22010, 46558, 24033, 115359565, 41023614, 20049167, 11258416, 3341601, 1876490, 38335694, 6940111, 19994088, 7353245, 247942, 537129, 440756, 84300, 36887, 705039, 352544, 13748017, 1233858, 63799, 5880, 94385104, 47192577, 27529034, 1779151, 4494612, 281009, 681580, 335664]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.2, G.5, G.7, G.9, G.11, G.12, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "b", "b2", "b4", "c", "c2", "d", "d2", "e", "e2", "f", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(2319239737250797869169935239150149833365278330835854625253125246219089385918476194425503887458531757237303675070956501103384244705809360033196065229490095477835961604888379764269813514484638252509535990741672499379130248924159385828861878101177316295204785956257735907308279920452457978308700837535996905296992768160914990521060279961271715609928961006542396579899107924735614709827957473532406766430680585972547836450295535564850261417031120075197791996552227718857144212587685463695009566474578988700646899978788712955301754191102631586271329169677517221376716230559835367577918283418316974720,663552); a := G.1; b := G.2; c := G.5; d := G.7; e := G.9; f := G.11; g := G.12; h := G.13; i := G.14; j := G.15; k := G.16; l := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2319239737250797869169935239150149833365278330835854625253125246219089385918476194425503887458531757237303675070956501103384244705809360033196065229490095477835961604888379764269813514484638252509535990741672499379130248924159385828861878101177316295204785956257735907308279920452457978308700837535996905296992768160914990521060279961271715609928961006542396579899107924735614709827957473532406766430680585972547836450295535564850261417031120075197791996552227718857144212587685463695009566474578988700646899978788712955301754191102631586271329169677517221376716230559835367577918283418316974720,663552)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(2319239737250797869169935239150149833365278330835854625253125246219089385918476194425503887458531757237303675070956501103384244705809360033196065229490095477835961604888379764269813514484638252509535990741672499379130248924159385828861878101177316295204785956257735907308279920452457978308700837535996905296992768160914990521060279961271715609928961006542396579899107924735614709827957473532406766430680585972547836450295535564850261417031120075197791996552227718857144212587685463695009566474578988700646899978788712955301754191102631586271329169677517221376716230559835367577918283418316974720,663552)'); a = G.1; b = G.2; c = G.5; d = G.7; e = G.9; f = G.11; g = G.12; h = G.13; i = G.14; j = G.15; k = G.16; l = G.17;
 
Permutation group:Degree $20$ $\langle(2,3,5,7)(4,6,8)(9,11)(10,12)(13,18,14,20)(15,16)(17,19), (1,2,4,3,6,7) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (2,3,5,7)(4,6,8)(9,11)(10,12)(13,18,14,20)(15,16)(17,19), (1,2,4,3,6,7)(5,8)(9,12,11,16)(10,14)(13,15)(17,20,19,18), (1,2)(3,4,7,8)(5,6)(9,10,13,17,20,16)(11,15,14,19,18,12) >;
 
Copy content gap:G := Group( (2,3,5,7)(4,6,8)(9,11)(10,12)(13,18,14,20)(15,16)(17,19), (1,2,4,3,6,7)(5,8)(9,12,11,16)(10,14)(13,15)(17,20,19,18), (1,2)(3,4,7,8)(5,6)(9,10,13,17,20,16)(11,15,14,19,18,12) );
 
Copy content sage:G = PermutationGroup(['(2,3,5,7)(4,6,8)(9,11)(10,12)(13,18,14,20)(15,16)(17,19)', '(1,2,4,3,6,7)(5,8)(9,12,11,16)(10,14)(13,15)(17,20,19,18)', '(1,2)(3,4,7,8)(5,6)(9,10,13,17,20,16)(11,15,14,19,18,12)'])
 
Transitive group: 36T33414 36T33415 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $S_4^2$ . $(A_4^2:D_4)$ $A_4^2$ . $(S_4^2:D_4)$ $C_2^9$ . $(S_3^2:S_3^2)$ $C_2^5$ . $(S_4^2:S_3^2)$ all 61

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 86 normal subgroups (74 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $S_4^2.\POPlus(4,3)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $A_4^2.A_4^2.C_2^2$ $G/G' \simeq$ $C_2^3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $S_4^2.\POPlus(4,3)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^9$ $G/\operatorname{Fit} \simeq$ $S_3^2:S_3^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^2.S_4^2:D_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^9$ $G/\operatorname{soc} \simeq$ $S_3^2:S_3^2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2^5.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^4$

Subgroup diagram and profile

Series

Derived series $A_4^2.S_4^2:D_4$ $\rhd$ $A_4^2.A_4^2.C_2^2$ $\rhd$ $C_2^2\times A_4^2.C_2^2$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^2.S_4^2:D_4$ $\rhd$ $C_2^8.C_3^4.C_2^4$ $\rhd$ $A_4^2.A_4^2.C_2^3$ $\rhd$ $A_4^2.A_4^2.C_2^2$ $\rhd$ $C_2^8.C_3^4.C_2$ $\rhd$ $C_2^8.C_3^4$ $\rhd$ $C_2^8.C_3^3$ $\rhd$ $C_2^2\times A_4^2.C_2^2$ $\rhd$ $A_4^2$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^2.S_4^2:D_4$ $\rhd$ $A_4^2.A_4^2.C_2^2$ $\rhd$ $C_2^8.C_3^4$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $410 \times 410$ character table is not available for this group.

Rational character table

The $400 \times 400$ rational character table is not available for this group.