Show commands: Magma
Group invariants
| Abstract group: | $C_2^9.C_3^4:\OD_{16}$ |
| |
| Order: | $663552=2^{13} \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $33409$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,11,15,17,2,12,16,18)(3,10,13,7)(4,9,14,8)(19,33,28,31,20,34,27,32)(21,35,25,24)(22,36,26,23)(29,30)$, $(1,30,6,33,17,36,14,19)(2,29,5,34,18,35,13,20)(3,24)(4,23)(7,27,15,31,11,26,10,22)(8,28,16,32,12,25,9,21)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ $16$: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ $32$: $C_2^2 : C_8$ $1296$: 12T215 $2592$: 24T5244 $331776$: 16T1907 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: None
Degree 9: None
Degree 12: None
Degree 18: 18T288
Low degree siblings
24T20616 x 2, 24T20619 x 2, 32T2439261 x 2, 32T2439262 x 2, 36T33409 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed