Properties

Label 663552.cu
Order \( 2^{13} \cdot 3^{4} \)
Exponent \( 2^{4} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{4} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $20$
Trans deg. $24$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,4,8)(3,6,11,13)(5,9)(7,10)(12,15)(14,16)(18,19), (1,3,7,12)(2,5,10,11,14,6,4,9)(8,13,16,15)(17,18)(19,20) >;
 
Copy content gap:G := Group( (1,2,4,8)(3,6,11,13)(5,9)(7,10)(12,15)(14,16)(18,19), (1,3,7,12)(2,5,10,11,14,6,4,9)(8,13,16,15)(17,18)(19,20) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,8)(3,6,11,13)(5,9)(7,10)(12,15)(14,16)(18,19)', '(1,3,7,12)(2,5,10,11,14,6,4,9)(8,13,16,15)(17,18)(19,20)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(39256136078124470499502854509605742018713306285395699094733967904968075363567954380820519907177080273355096806518005396960601326101492248546831963795235214965885095765425655361079111900768164176876173303162892257278475595997984030644553609248776661384548286000309319164562148948006313053009301444020114465220583337605678681782866613568444497977942791813643931129549394169807690971997883904046378460113263314356864146103362698107222929263289412673449107178270803519920486467394080219516784367590043622475743458809329577025639520752115495675318378260639139734108131100940401692919717830590237458834436656420024839979543169696,663552)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17;
 

Group information

Description:$C_2^9.C_3^4:\OD_{16}$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 13, $C_3$ x 4
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 12 16
Elements 1 5407 6560 87264 52832 290304 55296 165888 663552
Conjugacy classes   1 19 6 30 42 22 18 8 146
Divisions 1 19 6 27 42 9 18 2 124
Autjugacy classes 1 16 5 18 28 5 6 1 80

Minimal presentations

Permutation degree:$20$
Transitive degree:$24$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k \mid a^{8}=d^{6}=e^{6}=f^{6}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([17, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 2, 2, 2, 34, 86, 1817507, 4409956, 6965549, 1601046, 18538844, 15126621, 1619458, 5532365, 242, 8470085, 26928022, 581847, 2402360, 594954, 45558918, 10909943, 65728, 1266693, 3409424, 7945, 346, 2062855, 2376216, 13097, 7761850, 3175947, 43760456, 33868105, 903354, 5210627, 5611810, 103368, 450, 5249609, 24237946, 8029483, 13268220, 3614957, 887494, 33917322, 46091787, 10501964, 10098061, 4806726, 141467, 78686, 37750, 554, 1560203, 26125084, 10222893, 6697790, 8372239, 1101696, 445548, 50409245, 10311022, 4582719, 2291408, 71752, 31989, 12116, 5503, 39549901, 44622174, 12337967, 30137, 6592, 4467, 7340, 58164494, 21150751, 14541185, 1211876, 495853, 202110, 82787, 27724, 17031, 470031, 11280416, 705090, 352595, 9943, 44232, 1817, 7546, 51021232, 57180417, 41948978, 7490964, 374662, 624375, 78182, 122416, 36600, 12341]); a,b,c,d,e,f,g,h,i,j,k := Explode([G.1, G.4, G.5, G.7, G.9, G.11, G.13, G.14, G.15, G.16, G.17]); AssignNames(~G, ["a", "a2", "a4", "b", "c", "c2", "d", "d2", "e", "e2", "f", "f2", "g", "h", "i", "j", "k"]);
 
Copy content gap:G := PcGroupCode(39256136078124470499502854509605742018713306285395699094733967904968075363567954380820519907177080273355096806518005396960601326101492248546831963795235214965885095765425655361079111900768164176876173303162892257278475595997984030644553609248776661384548286000309319164562148948006313053009301444020114465220583337605678681782866613568444497977942791813643931129549394169807690971997883904046378460113263314356864146103362698107222929263289412673449107178270803519920486467394080219516784367590043622475743458809329577025639520752115495675318378260639139734108131100940401692919717830590237458834436656420024839979543169696,663552); a := G.1; b := G.4; c := G.5; d := G.7; e := G.9; f := G.11; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(39256136078124470499502854509605742018713306285395699094733967904968075363567954380820519907177080273355096806518005396960601326101492248546831963795235214965885095765425655361079111900768164176876173303162892257278475595997984030644553609248776661384548286000309319164562148948006313053009301444020114465220583337605678681782866613568444497977942791813643931129549394169807690971997883904046378460113263314356864146103362698107222929263289412673449107178270803519920486467394080219516784367590043622475743458809329577025639520752115495675318378260639139734108131100940401692919717830590237458834436656420024839979543169696,663552)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(39256136078124470499502854509605742018713306285395699094733967904968075363567954380820519907177080273355096806518005396960601326101492248546831963795235214965885095765425655361079111900768164176876173303162892257278475595997984030644553609248776661384548286000309319164562148948006313053009301444020114465220583337605678681782866613568444497977942791813643931129549394169807690971997883904046378460113263314356864146103362698107222929263289412673449107178270803519920486467394080219516784367590043622475743458809329577025639520752115495675318378260639139734108131100940401692919717830590237458834436656420024839979543169696,663552)'); a = G.1; b = G.4; c = G.5; d = G.7; e = G.9; f = G.11; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17;
 
Permutation group:Degree $20$ $\langle(1,2,4,8)(3,6,11,13)(5,9)(7,10)(12,15)(14,16)(18,19), (1,3,7,12)(2,5,10,11,14,6,4,9)(8,13,16,15)(17,18)(19,20)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 20 | (1,2,4,8)(3,6,11,13)(5,9)(7,10)(12,15)(14,16)(18,19), (1,3,7,12)(2,5,10,11,14,6,4,9)(8,13,16,15)(17,18)(19,20) >;
 
Copy content gap:G := Group( (1,2,4,8)(3,6,11,13)(5,9)(7,10)(12,15)(14,16)(18,19), (1,3,7,12)(2,5,10,11,14,6,4,9)(8,13,16,15)(17,18)(19,20) );
 
Copy content sage:G = PermutationGroup(['(1,2,4,8)(3,6,11,13)(5,9)(7,10)(12,15)(14,16)(18,19)', '(1,3,7,12)(2,5,10,11,14,6,4,9)(8,13,16,15)(17,18)(19,20)'])
 
Transitive group: 24T20616 24T20619 36T33409 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^9$ . $(C_3^4:\OD_{16})$ $(C_2^8.C_3^3.D_6)$ . $C_8$ (2) $(C_2^9.C_3^4:C_4)$ . $C_4$ $(C_2^9.C_3^2:F_9)$ . $C_2$ (2) all 15

Elements of the group are displayed as permutations of degree 20.

Homology

Abelianization: $C_{2} \times C_{8} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2} \times C_{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 20 normal subgroups (14 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2.C_4.C_2^3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 8 larger groups in the database.

This group is a maximal quotient of 4 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $146 \times 146$ character table is not available for this group.

Rational character table

The $124 \times 124$ rational character table is not available for this group.