Show commands: Magma
Group invariants
| Abstract group: | $C_6^4.D_6\wr C_2$ |
| |
| Order: | $373248=2^{9} \cdot 3^{6}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $28690$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,31,11,27,18,22)(2,32,12,28,17,21)(3,33,10,25,13,24)(4,34,9,26,14,23)(5,36,7,30,15,20)(6,35,8,29,16,19)$, $(1,10,5,8,4,12,2,9,6,7,3,11)(15,17)(16,18)(19,30,20,29)(21,27,22,28)(23,25,24,26)$, $(1,17,9,3,16,7)(2,18,10,4,15,8)(5,14,12,6,13,11)(19,20)(21,22)(23,24)(25,36)(26,35)(27,34)(28,33)(29,31)(30,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ $72$: $C_3^2:D_4$ x 2 $144$: 12T77 x 2 $288$: 12T125 x 2 $1152$: $S_4\wr C_2$ $2304$: 12T235 $2592$: 12T248 $4608$: 12T260 $23328$: 18T648 $41472$: 24T14605 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $C_3^2:D_4$
Degree 9: None
Degree 12: 12T236
Degree 18: 18T648
Low degree siblings
36T28687, 36T28688, 36T28689, 36T28691, 36T28692, 36T28693, 36T28694, 36T28695, 36T28696, 36T28697, 36T28698, 36T28699, 36T28700, 36T28701, 36T28702Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed