Show commands: Magma
Group invariants
| Abstract group: | $C_6^4.D_6\wr C_2$ |
| |
| Order: | $373248=2^{9} \cdot 3^{6}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $28688$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,27,16,33,9,20)(2,28,15,34,10,19)(3,25,17,35,8,21)(4,26,18,36,7,22)(5,29,13,32,12,23)(6,30,14,31,11,24)$, $(7,11,10)(8,12,9)(13,18,16,14,17,15)(19,33,20,34)(21,31,22,32)(23,36,24,35)(25,30)(26,29)(27,28)$, $(1,19,13,25,8,32)(2,20,14,26,7,31)(3,24,17,29,12,35,5,22,16,27,9,33)(4,23,18,30,11,36,6,21,15,28,10,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ $72$: $C_3^2:D_4$ x 2 $144$: 12T77 x 2 $288$: 12T125 x 2 $1152$: $S_4\wr C_2$ $2304$: 12T235 $2592$: 12T248 $4608$: 12T260 $23328$: 18T648 $41472$: 24T14605 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $C_3^2:D_4$
Degree 9: None
Degree 12: 12T235
Degree 18: 18T648
Low degree siblings
36T28687, 36T28689, 36T28690, 36T28691, 36T28692, 36T28693, 36T28694, 36T28695, 36T28696, 36T28697, 36T28698, 36T28699, 36T28700, 36T28701, 36T28702Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed