Show commands: Magma
Group invariants
| Abstract group: | $A_4^2.C_2\wr D_6$ |
| |
| Order: | $110592=2^{12} \cdot 3^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $20490$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,12)(2,11)(3,9)(4,10)(5,8)(6,7)(13,24,14,23)(15,21,16,22)(17,20,18,19)(25,35,26,36)(27,34,28,33)(29,32,30,31)$, $(1,24,16,31,29,9,2,23,15,32,30,10)(3,20,17,34,25,11,4,19,18,33,26,12)(5,21,13,36,27,8,6,22,14,35,28,7)$, $(1,10,26,33,14,21)(2,9,25,34,13,22)(3,8,28,31,16,19,4,7,27,32,15,20)(5,12,29,36,18,23)(6,11,30,35,17,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $S_3$ x 2, $C_6$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 6, $C_6\times C_2$ x 7 $16$: $D_4\times C_2$ $18$: $S_3\times C_3$ x 2 $24$: $S_4$, $S_3 \times C_2^2$ x 2, $(C_6\times C_2):C_2$ x 2, $D_4 \times C_3$ x 2, 24T3 $36$: $S_3^2$, $C_6\times S_3$ x 6 $48$: $S_4\times C_2$ x 3, 12T28, 24T25, 24T38 $72$: 12T37, 12T42 x 2, 12T45, 24T68 x 2 $96$: 12T48 $108$: 12T70 $144$: 12T83, 18T61 x 3, 24T204, 24T208, 24T248 $192$: $V_4^2:(S_3\times C_2)$, 12T86 $216$: 24T547 $288$: $A_4\wr C_2$, 18T111, 36T330 $384$: 12T136 $432$: 24T1280, 24T1328 $576$: 12T158 x 3, 24T1496, 24T1497, 36T739, 36T771 $768$: 12T186 $864$: 36T1298 $1152$: 12T208 x 2, 24T2772, 36T1629, 36T1654 $1728$: 24T4931, 24T4944, 36T2390 $2304$: 24T5101, 36T3070, 36T3112 $3456$: 36T4310, 36T4315 $6912$: 32T399497, 36T6859, 36T6860 $13824$: 36T9644 $27648$: 32T1123267, 36T13105 $55296$: 36T16925 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $D_{6}$, $S_3\times C_3$
Degree 9: None
Degree 12: None
Degree 18: 18T46
Low degree siblings
36T20490 x 7Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed