Properties

Label 110592.cy
Order \( 2^{12} \cdot 3^{3} \)
Exponent \( 2^{2} \cdot 3 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \cdot 3 \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{15} \cdot 3^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. not computed
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,12)(2,11)(3,9)(4,10)(5,8)(6,7)(13,24,14,23)(15,21,16,22)(17,20,18,19)(25,35,26,36)(27,34,28,33)(29,32,30,31), (1,24,16,31,29,9,2,23,15,32,30,10)(3,20,17,34,25,11,4,19,18,33,26,12)(5,21,13,36,27,8,6,22,14,35,28,7), (1,10,26,33,14,21)(2,9,25,34,13,22)(3,8,28,31,16,19,4,7,27,32,15,20)(5,12,29,36,18,23)(6,11,30,35,17,24) >;
 
Copy content gap:G := Group( (1,12)(2,11)(3,9)(4,10)(5,8)(6,7)(13,24,14,23)(15,21,16,22)(17,20,18,19)(25,35,26,36)(27,34,28,33)(29,32,30,31), (1,24,16,31,29,9,2,23,15,32,30,10)(3,20,17,34,25,11,4,19,18,33,26,12)(5,21,13,36,27,8,6,22,14,35,28,7), (1,10,26,33,14,21)(2,9,25,34,13,22)(3,8,28,31,16,19,4,7,27,32,15,20)(5,12,29,36,18,23)(6,11,30,35,17,24) );
 
Copy content sage:G = PermutationGroup(['(1,12)(2,11)(3,9)(4,10)(5,8)(6,7)(13,24,14,23)(15,21,16,22)(17,20,18,19)(25,35,26,36)(27,34,28,33)(29,32,30,31)', '(1,24,16,31,29,9,2,23,15,32,30,10)(3,20,17,34,25,11,4,19,18,33,26,12)(5,21,13,36,27,8,6,22,14,35,28,7)', '(1,10,26,33,14,21)(2,9,25,34,13,22)(3,8,28,31,16,19,4,7,27,32,15,20)(5,12,29,36,18,23)(6,11,30,35,17,24)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(26477268927326512478950277488950301295592996825248465755713743632078422027154983501492110135944244381459995924352801287967758883979193802976723313244221222959013004077193538820351852420920395951004774191878925640532690240319885120268397760697974499527072794912396057916184151664352006848161540044970457943103065096364312947300504757198629376,110592)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15;
 

Group information

Description:$A_4^2.C_2\wr D_6$
Order: \(110592\)\(\medspace = 2^{12} \cdot 3^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2\times C_2^8.C_3^3.C_2^6$, of order \(884736\)\(\medspace = 2^{15} \cdot 3^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12, $C_3$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 12
Elements 1 2175 2672 14208 40080 51456 110592
Conjugacy classes   1 57 11 44 184 95 392
Divisions 1 57 7 44 101 50 260
Autjugacy classes 1 43 7 30 74 28 183

Minimal presentations

Permutation degree:not computed
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 18 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l \mid c^{6}=d^{2}=e^{2}=f^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([15, -2, -3, -2, -3, -2, -3, -2, 2, 2, 2, 2, 2, 2, 2, 2, 30, 116656, 3532952, 806912, 122, 3111843, 2715498, 94008, 1746904, 2107369, 569284, 340474, 214, 1704245, 51860, 284075, 26510, 45366, 669096, 349701, 25927, 794917, 386692, 670688, 3805403, 2420318, 456893, 211478, 103763, 1009839, 502254, 9729730, 1461265, 421780, 70360, 43150, 1982891, 5618186, 2313401, 136136, 312191, 157766, 13773252, 379107, 3446862, 845967, 394362, 160962, 18552253, 10228708, 2252923, 487678, 592273, 284218, 15600614, 97229, 3944744, 1782059, 5474, 176264]); a,b,c,d,e,f,g,h,i,j,k,l := Explode([G.1, G.3, G.5, G.7, G.8, G.9, G.10, G.11, G.12, G.13, G.14, G.15]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "c2", "d", "e", "f", "g", "h", "i", "j", "k", "l"]);
 
Copy content gap:G := PcGroupCode(26477268927326512478950277488950301295592996825248465755713743632078422027154983501492110135944244381459995924352801287967758883979193802976723313244221222959013004077193538820351852420920395951004774191878925640532690240319885120268397760697974499527072794912396057916184151664352006848161540044970457943103065096364312947300504757198629376,110592); a := G.1; b := G.3; c := G.5; d := G.7; e := G.8; f := G.9; g := G.10; h := G.11; i := G.12; j := G.13; k := G.14; l := G.15;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(26477268927326512478950277488950301295592996825248465755713743632078422027154983501492110135944244381459995924352801287967758883979193802976723313244221222959013004077193538820351852420920395951004774191878925640532690240319885120268397760697974499527072794912396057916184151664352006848161540044970457943103065096364312947300504757198629376,110592)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(26477268927326512478950277488950301295592996825248465755713743632078422027154983501492110135944244381459995924352801287967758883979193802976723313244221222959013004077193538820351852420920395951004774191878925640532690240319885120268397760697974499527072794912396057916184151664352006848161540044970457943103065096364312947300504757198629376,110592)'); a = G.1; b = G.3; c = G.5; d = G.7; e = G.8; f = G.9; g = G.10; h = G.11; i = G.12; j = G.13; k = G.14; l = G.15;
 
Permutation group:Degree $36$ $\langle(1,12)(2,11)(3,9)(4,10)(5,8)(6,7)(13,24,14,23)(15,21,16,22)(17,20,18,19) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,12)(2,11)(3,9)(4,10)(5,8)(6,7)(13,24,14,23)(15,21,16,22)(17,20,18,19)(25,35,26,36)(27,34,28,33)(29,32,30,31), (1,24,16,31,29,9,2,23,15,32,30,10)(3,20,17,34,25,11,4,19,18,33,26,12)(5,21,13,36,27,8,6,22,14,35,28,7), (1,10,26,33,14,21)(2,9,25,34,13,22)(3,8,28,31,16,19,4,7,27,32,15,20)(5,12,29,36,18,23)(6,11,30,35,17,24) >;
 
Copy content gap:G := Group( (1,12)(2,11)(3,9)(4,10)(5,8)(6,7)(13,24,14,23)(15,21,16,22)(17,20,18,19)(25,35,26,36)(27,34,28,33)(29,32,30,31), (1,24,16,31,29,9,2,23,15,32,30,10)(3,20,17,34,25,11,4,19,18,33,26,12)(5,21,13,36,27,8,6,22,14,35,28,7), (1,10,26,33,14,21)(2,9,25,34,13,22)(3,8,28,31,16,19,4,7,27,32,15,20)(5,12,29,36,18,23)(6,11,30,35,17,24) );
 
Copy content sage:G = PermutationGroup(['(1,12)(2,11)(3,9)(4,10)(5,8)(6,7)(13,24,14,23)(15,21,16,22)(17,20,18,19)(25,35,26,36)(27,34,28,33)(29,32,30,31)', '(1,24,16,31,29,9,2,23,15,32,30,10)(3,20,17,34,25,11,4,19,18,33,26,12)(5,21,13,36,27,8,6,22,14,35,28,7)', '(1,10,26,33,14,21)(2,9,25,34,13,22)(3,8,28,31,16,19,4,7,27,32,15,20)(5,12,29,36,18,23)(6,11,30,35,17,24)'])
 
Transitive group: 36T20490 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^6.S_4^2)$ . $C_3$ $(C_2^5.S_4^2)$ . $C_6$ $(C_2^5.S_4^2)$ . $C_6$ $(C_2^5.S_4^2)$ . $C_6$ all 99

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{6} \simeq C_{2}^{3} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{6}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 119 normal subgroups (109 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^8.(C_6\times S_3^2)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^9:C_3^2$ $G/G' \simeq$ $C_2^2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^3$ $G/\Phi \simeq$ $A_4^3.C_2^3$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^{10}$ $G/\operatorname{Fit} \simeq$ $C_3\times S_3^2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $A_4^2.C_2\wr D_6$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^7$ $G/\operatorname{soc} \simeq$ $C_6\times S_3\times S_4$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^3$

Subgroup diagram and profile

Series

Derived series $A_4^2.C_2\wr D_6$ $\rhd$ $C_2^9:C_3^2$ $\rhd$ $C_2^8$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $A_4^2.C_2\wr D_6$ $\rhd$ $C_2^4:C_3.A_4^2.C_2^3$ $\rhd$ $C_2^8.C_3.C_6^2$ $\rhd$ $C_2^8.C_3^3.C_2$ $\rhd$ $C_2^9:C_3^2$ $\rhd$ $C_2^4:A_4^2$ $\rhd$ $C_2^8.C_3$ $\rhd$ $C_2^8$ $\rhd$ $C_2^6$ $\rhd$ $C_2^2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $A_4^2.C_2\wr D_6$ $\rhd$ $C_2^9:C_3^2$ $\rhd$ $C_2^4:A_4^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^2$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $392 \times 392$ character table is not available for this group.

Rational character table

The $260 \times 260$ rational character table is not available for this group.