Show commands: Magma
Group invariants
Abstract group: | $C_3^{12}.C_2^8.C_3^4.C_2^6.C_2^3$ |
| |
Order: | $5642219814912=2^{17} \cdot 3^{16}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $120220$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,35,15,10,3,36,13,12)(2,34,14,11)(4,33,17,7,29,20,5,31,18,8,30,21,6,32,16,9,28,19)(22,26,23,25)(24,27)$, $(1,8,2,9)(3,7)(4,35,5,36,6,34)(10,30)(11,29)(12,28)(13,33,15,32,14,31)(16,24,17,22,18,23)(19,26)(20,25)(21,27)$, $(1,10,3,11)(2,12)(4,19,29,31,18,7,6,21,30,33,17,8)(5,20,28,32,16,9)(13,36,14,34,15,35)(22,27,23,26,24,25)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 20, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 10, $C_2^2:C_4$ x 12, $Q_8:C_2$ x 4, $C_4\times C_2^2$ $32$: $C_2^2 \wr C_2$ x 8, $C_2^3 : C_4 $ x 8, $C_4 \times D_4$ x 4, $C_2 \times (C_2^2:C_4)$ x 3, 16T30 x 2, 16T34 x 12, 16T37 x 4, $C_4^2:C_2$ x 2 $64$: $(((C_4 \times C_2): C_2):C_2):C_2$ x 8, 16T76 x 4, 16T79, 32T239 x 4, 32T241 x 2, 32T308 x 4, 32T320 x 4 $128$: 16T208 x 4, 16T230 x 4, 16T240 x 2, 16T350 x 8 $256$: 32T3707 x 2, 32T4130 $512$: 16T903 $5184$: 12T261 $10368$: 24T10061 x 2, 24T10065 $41472$: 24T14539 $1327104$: 16T1936 $2654208$: 24T22629 x 2, 24T22630 $10616832$: 24T23796 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: None
Degree 9: None
Degree 12: 12T261
Degree 18: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed