Properties

Label 564...912.i
Order \( 2^{17} \cdot 3^{16} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{19} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,35,15,10,3,36,13,12)(2,34,14,11)(4,33,17,7,29,20,5,31,18,8,30,21,6,32,16,9,28,19)(22,26,23,25)(24,27), (1,8,2,9)(3,7)(4,35,5,36,6,34)(10,30)(11,29)(12,28)(13,33,15,32,14,31)(16,24,17,22,18,23)(19,26)(20,25)(21,27), (1,10,3,11)(2,12)(4,19,29,31,18,7,6,21,30,33,17,8)(5,20,28,32,16,9)(13,36,14,34,15,35)(22,27,23,26,24,25) >;
 
Copy content gap:G := Group( (1,35,15,10,3,36,13,12)(2,34,14,11)(4,33,17,7,29,20,5,31,18,8,30,21,6,32,16,9,28,19)(22,26,23,25)(24,27), (1,8,2,9)(3,7)(4,35,5,36,6,34)(10,30)(11,29)(12,28)(13,33,15,32,14,31)(16,24,17,22,18,23)(19,26)(20,25)(21,27), (1,10,3,11)(2,12)(4,19,29,31,18,7,6,21,30,33,17,8)(5,20,28,32,16,9)(13,36,14,34,15,35)(22,27,23,26,24,25) );
 
Copy content sage:G = PermutationGroup(['(1,35,15,10,3,36,13,12)(2,34,14,11)(4,33,17,7,29,20,5,31,18,8,30,21,6,32,16,9,28,19)(22,26,23,25)(24,27)', '(1,8,2,9)(3,7)(4,35,5,36,6,34)(10,30)(11,29)(12,28)(13,33,15,32,14,31)(16,24,17,22,18,23)(19,26)(20,25)(21,27)', '(1,10,3,11)(2,12)(4,19,29,31,18,7,6,21,30,33,17,8)(5,20,28,32,16,9)(13,36,14,34,15,35)(22,27,23,26,24,25)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3071509554116860662777085965201911957027956375915071123623484702743302552131634202988790116773148852898033845815605681133004417367104946555845491593913046685122629079108659345151649509258362750011124287952054473693660863667245832030079431994242391573869065998590469141233805564402779538787731908450764523922316092531051028623665571561229322037829965665310916160519074911437756166798946555598963163813833518815042740420471549354970647533449262896827425806648928822468309307059493683995515849831143927234039485976512864208769513283952460322966025436953230122564522199916372961239598601169451604340457370980360207317210882106060878251367865220834816659877228362235360739909461767773916227962071588321223561665142951526419802971824043261016145275713571415456024714262120216301403560302952982470462089242176354390884065586428400120216280730954791901306240471976963648513292881590544646542471339606214494505348324357562198775611012365461856369546646656026438296708432241114961162271938265818401316791607940648297259555852411727301255675320566618180791131451339251483541187376619838125979630151831942823591758024946440873767033529177527952279425014277768757568066001496701645482193994285421396412916195235914745995582421252067660229429784919208379423163642971083474127693629744792078172481628372832927639229322763556665875655165995285908011659536589627417195738508448499130654503771319743305942528508043390295941753830299516817074042953203866575392189611759305328038067821578164087899609026830872496281197876986570058097470014716879847794176609700177976176349943567997605628068592774635706571084025197062795103414293102922850011152105323323341031067634504354284013122861372815237380745331177140210160261431652219738475004039226328172076024085512860995568944509543845136998328155181544937677004351896097653747955865539839781330161169636733482051095071622981546209559750175271206721574151680438284483824138643282057916353506871756911168407140613049616107175752194950168450236908929329982883753719394579513009740433924908835139540685673055950140172129940188387389924727529723727921129350407109880198443082996819587770398263628671011901904966208107783911956528062139161608638054559662995639690550488309201096820344543433567101341219590582587216433659578204862444644095190745073408345292020237490005332843831114385280660567577113824793975394272561382280365856818844393175236625594440192061141581108360190739911032134070545686483291816435175937571113379816574580002549212355013111243716164908229512276467335556641395408516519232157608048513101231166723365889854990529640566243211252214458020226260783471531036207893288616363693756746842666381897858798208698371586779565449697671446054555032554821991491979900070487643076667579215221519736140201547141374196651215987970934464924828949528833345842083236980620905896752879384974947243124826433822687601109933260464929511238551223586700440185769699217988836259243748130548873431847938185625869291343224420426850239586374762820875413569374610307637759322306236456774654554743601717669787815190401959434794342146208307524003724359981105287907679454233308653892990660092119653298052663234325369378294441074331559430538722969488714860844396033435030576807506425091206825837013024329838090631712569294865773139820991937707066318742583891171987540185458087349786827120753789777520084599631043320954196911021524689608925189726458759827291760925299174130023830622584934899122016969735615670881291439438517132969749353601723367823552032796082471508617288197264531046670986585742637072140485703068783320927196964215240190713082068588576541460779644270442221953903116120938539929147006343856446837918786876790375500194275291992233475418197958571216251410933248033329398579279996057866311045214233767068330177565974572449200485909468555940523256880299463439176020725752497029457928865382929259478584607598553173420296366645165157939729775546715603913788794982035736702607986573377174628459691963513314375118556437334423774259242936193423027870824855161414104204816810512374749870650940975686687367481704434887641867414060275696276254959462316232762126000365116578294571002278538175421277847969359345481322622322854748209706771426354915638011484386791753099509678715243515293686190220964154296506997142510118381881591542770178477376976449326503599332492472748674046012423914012975801917356812511094691930226239355177809788580638550346585313843229459836041190391607507974575740947775381144989578730172143027426652305219179819942571374460027429802672368130567255088516794883918432718317818340292608465152206083372417265474935295605887833111396009927871730996038745696091648283703440767147141989841372087029579461625438294597007759664114888886768968956219038743722656743418123381866008449384512531769813335803163323141693769819861143223068075439855132280331871297515196839090768960364345860235415459234017052644828209894963599847418321730600746760790237353467397208483948557544798645984363542858489008333807357467465064129044501944999769540222468075277342047,5642219814912)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.28; p = G.30; q = G.31; r = G.32; s = G.33;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.C_2^6.C_2^3$
Order: \(5642219814912\)\(\medspace = 2^{17} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(22568879259648\)\(\medspace = 2^{19} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 17, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial or rational has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Statistics about orders of elements in this group have not been computed.

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid g^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([33, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 66, 182494551799330, 500245323897926, 175084189814789, 266, 483358670178915, 231609000015924, 38596312379430, 571910238474964, 119414701994317, 6118317713050, 6811405289473, 33215114988136, 259872431243045, 381687699954566, 153116461526759, 112226150707808, 30054190488437, 566, 996302558668038, 29951012850567, 39461823568008, 26961987443265, 41945280418410, 949947041940, 1072215663619591, 347645778644776, 149273722678153, 18803127131818, 85661239128043, 22379369657212, 894538573045, 766, 850232547939464, 522950336263913, 55243126917866, 185022979793099, 73778835945020, 24902389931141, 1002312836, 2460475287344, 1755570534727689, 158520261651882, 913538197515, 170575019825868, 80973184842141, 2235242267454, 3636604994427, 247494300, 202956400623, 966, 1423487971547146, 47769233884459, 307172096675212, 51675250511917, 93987061729054, 614662370959, 17575958463436, 7474152439753, 446504081044, 8535834988, 967019406059531, 41383391132204, 539442708913229, 47176506793262, 72097827886799, 2921702805824, 335245671497, 958314408722, 487095365867, 1503860854628, 527283266345, 1166, 102993927708684, 284302302755406, 221023655535, 6329371153392, 53374641, 1608522870450, 1055134265571, 263843334888, 381261, 452794664044813, 54554843008558, 81037414047823, 128178392436976, 62971765718545, 31763683429810, 3352252880803, 5806357104484, 2893865613685, 176924480350, 48111045787, 15778360204, 15778347763, 1366, 68960464404494, 41057327, 13302558800, 1915568455793, 5132306, 778199685299, 59861514452, 9976919285, 13302559031, 1662820184, 12257, 199329547051023, 55177896812592, 578271123302481, 29636975630706, 136453155683475, 15085810682100, 7510932212469, 10860857701302, 649460820375, 319705369944, 54993057321, 332417777850, 6010802076, 1566, 134624062070800, 542767661650, 33122554173043, 8276886934420, 17449525, 1379789427703, 345026606248, 3193243861, 1440886415378273, 1510234613876786, 646391659256723, 189376298559476, 65195678623829, 40481902893350, 10353095334071, 1563270113840, 7982826419585, 239467323662, 300555071339, 40573445996, 10143265589, 1127040668, 281757911, 1766, 148009589342226, 607809870987348, 41171445, 170530193078934, 4701826331319, 9886752, 3250683, 542109, 15561, 266410571961619, 1953998069812, 391599447885445, 253870957486198, 24185447700631, 88161057357304, 44597136038617, 11190072849370, 7654853575003, 2222273116, 6653845789, 22914239422, 626242834, 1082034940, 1966, 1421376812368148, 24142370402357, 101237965922102, 55489221849719, 176244421111064, 5237908242521, 44815387301210, 1816640212715, 7497189941756, 4666773197, 13973075774, 436299805247, 12097884467, 1059799937, 152906972, 2278665327970965, 1207402308034614, 384395953803135, 313856801381496, 29242466206425, 23005847155290, 5356219841499, 18469562665212, 2808332044341, 148800820926, 148783884831, 49594628544, 12400068801, 4704930, 1377629076, 344446893, 2148092286, 25269804, 176264043, 2166, 765946390, 5874409930840, 44792375722105, 10198628506, 5099314363, 933176461789, 933174494494, 3935107, 18865, 2865705060759575, 1796930915991608, 394648647288281, 527487923153786, 224297103089819, 39206356745084, 2638426263485, 6602235498398, 299972699423, 626136479024, 90582888089, 5801394050, 161150342, 2343515912, 3564650, 173310875, 20895260, 2366, 172431615628824, 541414139904057, 857620482470490, 65914178457723, 2161665792156, 82026902707389, 2921020185855, 3119172883488, 1738876185, 131096451, 145174284, 21760917, 951216, 3469769664311833, 44824981646107, 141736102649980, 6744397271197, 105990799337470, 752259695839, 12010215881920, 5698151028001, 4323393682, 9367218787, 33359560, 2233944298, 13529596, 94610629, 63043126, 3516868, 3486013, 2566, 1820556260278298, 105164929926236, 862005805181, 1724011610270, 4619135, 431002902752, 385169, 128627, 19454992484, 27714185, 4619531, 22169, 1974735157570587, 2354616745721916, 162035109282909, 221024683224702, 153644553216159, 73637646445632, 223484184225, 791503042434, 10824957158691, 31039370532, 26383475013, 8277148038, 215551242, 1650161100, 1796910, 7784463, 66961152, 5938410, 6445719, 2766, 4288574658576412, 56477581433950, 925877931391, 1620251652256, 115737222145, 462931524226, 250753645555, 6429708181, 20896137466, 7501165447, 178599691, 17364397, 138595, 82114589, 68960464404542, 1478062175, 252855036149888, 239924949074081, 4310029025474, 19993745756420, 13109671618853, 428536016, 7698929, 37636562, 11904548, 4063781, 72134, 12800, 1306420741435422, 275768160, 1003466952705, 16577680496418, 7422848978883, 4082556597204, 166097668437, 1185593197830, 213062796471, 96221915424, 38374187145, 1081859853, 307588047, 8471163, 835557, 4760826135183391, 122605848060001, 681431573864578, 332798093033635, 42270216063172, 10471776961765, 27860879439622, 5299739394343, 624333574984, 299751028201, 100508221834, 2759049742, 922420816, 306561682, 265504435, 98994388, 8364310, 6387511, 2459224, 298714, 3620041357870112, 1061991151829057, 128536273008098, 610539567327491, 267604913258660, 129851599512293, 32067814589942, 3599673330791, 14354791115048, 1803494477201, 914550990770, 304240603787, 8434192271, 2867851601, 477034931, 230049764, 11056319, 4430876, 2130941, 183875]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.26, G.28, G.30, G.31, G.32, G.33]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "n2", "o", "o2", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(3071509554116860662777085965201911957027956375915071123623484702743302552131634202988790116773148852898033845815605681133004417367104946555845491593913046685122629079108659345151649509258362750011124287952054473693660863667245832030079431994242391573869065998590469141233805564402779538787731908450764523922316092531051028623665571561229322037829965665310916160519074911437756166798946555598963163813833518815042740420471549354970647533449262896827425806648928822468309307059493683995515849831143927234039485976512864208769513283952460322966025436953230122564522199916372961239598601169451604340457370980360207317210882106060878251367865220834816659877228362235360739909461767773916227962071588321223561665142951526419802971824043261016145275713571415456024714262120216301403560302952982470462089242176354390884065586428400120216280730954791901306240471976963648513292881590544646542471339606214494505348324357562198775611012365461856369546646656026438296708432241114961162271938265818401316791607940648297259555852411727301255675320566618180791131451339251483541187376619838125979630151831942823591758024946440873767033529177527952279425014277768757568066001496701645482193994285421396412916195235914745995582421252067660229429784919208379423163642971083474127693629744792078172481628372832927639229322763556665875655165995285908011659536589627417195738508448499130654503771319743305942528508043390295941753830299516817074042953203866575392189611759305328038067821578164087899609026830872496281197876986570058097470014716879847794176609700177976176349943567997605628068592774635706571084025197062795103414293102922850011152105323323341031067634504354284013122861372815237380745331177140210160261431652219738475004039226328172076024085512860995568944509543845136998328155181544937677004351896097653747955865539839781330161169636733482051095071622981546209559750175271206721574151680438284483824138643282057916353506871756911168407140613049616107175752194950168450236908929329982883753719394579513009740433924908835139540685673055950140172129940188387389924727529723727921129350407109880198443082996819587770398263628671011901904966208107783911956528062139161608638054559662995639690550488309201096820344543433567101341219590582587216433659578204862444644095190745073408345292020237490005332843831114385280660567577113824793975394272561382280365856818844393175236625594440192061141581108360190739911032134070545686483291816435175937571113379816574580002549212355013111243716164908229512276467335556641395408516519232157608048513101231166723365889854990529640566243211252214458020226260783471531036207893288616363693756746842666381897858798208698371586779565449697671446054555032554821991491979900070487643076667579215221519736140201547141374196651215987970934464924828949528833345842083236980620905896752879384974947243124826433822687601109933260464929511238551223586700440185769699217988836259243748130548873431847938185625869291343224420426850239586374762820875413569374610307637759322306236456774654554743601717669787815190401959434794342146208307524003724359981105287907679454233308653892990660092119653298052663234325369378294441074331559430538722969488714860844396033435030576807506425091206825837013024329838090631712569294865773139820991937707066318742583891171987540185458087349786827120753789777520084599631043320954196911021524689608925189726458759827291760925299174130023830622584934899122016969735615670881291439438517132969749353601723367823552032796082471508617288197264531046670986585742637072140485703068783320927196964215240190713082068588576541460779644270442221953903116120938539929147006343856446837918786876790375500194275291992233475418197958571216251410933248033329398579279996057866311045214233767068330177565974572449200485909468555940523256880299463439176020725752497029457928865382929259478584607598553173420296366645165157939729775546715603913788794982035736702607986573377174628459691963513314375118556437334423774259242936193423027870824855161414104204816810512374749870650940975686687367481704434887641867414060275696276254959462316232762126000365116578294571002278538175421277847969359345481322622322854748209706771426354915638011484386791753099509678715243515293686190220964154296506997142510118381881591542770178477376976449326503599332492472748674046012423914012975801917356812511094691930226239355177809788580638550346585313843229459836041190391607507974575740947775381144989578730172143027426652305219179819942571374460027429802672368130567255088516794883918432718317818340292608465152206083372417265474935295605887833111396009927871730996038745696091648283703440767147141989841372087029579461625438294597007759664114888886768968956219038743722656743418123381866008449384512531769813335803163323141693769819861143223068075439855132280331871297515196839090768960364345860235415459234017052644828209894963599847418321730600746760790237353467397208483948557544798645984363542858489008333807357467465064129044501944999769540222468075277342047,5642219814912); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.20; l := G.22; m := G.24; n := G.26; o := G.28; p := G.30; q := G.31; r := G.32; s := G.33;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3071509554116860662777085965201911957027956375915071123623484702743302552131634202988790116773148852898033845815605681133004417367104946555845491593913046685122629079108659345151649509258362750011124287952054473693660863667245832030079431994242391573869065998590469141233805564402779538787731908450764523922316092531051028623665571561229322037829965665310916160519074911437756166798946555598963163813833518815042740420471549354970647533449262896827425806648928822468309307059493683995515849831143927234039485976512864208769513283952460322966025436953230122564522199916372961239598601169451604340457370980360207317210882106060878251367865220834816659877228362235360739909461767773916227962071588321223561665142951526419802971824043261016145275713571415456024714262120216301403560302952982470462089242176354390884065586428400120216280730954791901306240471976963648513292881590544646542471339606214494505348324357562198775611012365461856369546646656026438296708432241114961162271938265818401316791607940648297259555852411727301255675320566618180791131451339251483541187376619838125979630151831942823591758024946440873767033529177527952279425014277768757568066001496701645482193994285421396412916195235914745995582421252067660229429784919208379423163642971083474127693629744792078172481628372832927639229322763556665875655165995285908011659536589627417195738508448499130654503771319743305942528508043390295941753830299516817074042953203866575392189611759305328038067821578164087899609026830872496281197876986570058097470014716879847794176609700177976176349943567997605628068592774635706571084025197062795103414293102922850011152105323323341031067634504354284013122861372815237380745331177140210160261431652219738475004039226328172076024085512860995568944509543845136998328155181544937677004351896097653747955865539839781330161169636733482051095071622981546209559750175271206721574151680438284483824138643282057916353506871756911168407140613049616107175752194950168450236908929329982883753719394579513009740433924908835139540685673055950140172129940188387389924727529723727921129350407109880198443082996819587770398263628671011901904966208107783911956528062139161608638054559662995639690550488309201096820344543433567101341219590582587216433659578204862444644095190745073408345292020237490005332843831114385280660567577113824793975394272561382280365856818844393175236625594440192061141581108360190739911032134070545686483291816435175937571113379816574580002549212355013111243716164908229512276467335556641395408516519232157608048513101231166723365889854990529640566243211252214458020226260783471531036207893288616363693756746842666381897858798208698371586779565449697671446054555032554821991491979900070487643076667579215221519736140201547141374196651215987970934464924828949528833345842083236980620905896752879384974947243124826433822687601109933260464929511238551223586700440185769699217988836259243748130548873431847938185625869291343224420426850239586374762820875413569374610307637759322306236456774654554743601717669787815190401959434794342146208307524003724359981105287907679454233308653892990660092119653298052663234325369378294441074331559430538722969488714860844396033435030576807506425091206825837013024329838090631712569294865773139820991937707066318742583891171987540185458087349786827120753789777520084599631043320954196911021524689608925189726458759827291760925299174130023830622584934899122016969735615670881291439438517132969749353601723367823552032796082471508617288197264531046670986585742637072140485703068783320927196964215240190713082068588576541460779644270442221953903116120938539929147006343856446837918786876790375500194275291992233475418197958571216251410933248033329398579279996057866311045214233767068330177565974572449200485909468555940523256880299463439176020725752497029457928865382929259478584607598553173420296366645165157939729775546715603913788794982035736702607986573377174628459691963513314375118556437334423774259242936193423027870824855161414104204816810512374749870650940975686687367481704434887641867414060275696276254959462316232762126000365116578294571002278538175421277847969359345481322622322854748209706771426354915638011484386791753099509678715243515293686190220964154296506997142510118381881591542770178477376976449326503599332492472748674046012423914012975801917356812511094691930226239355177809788580638550346585313843229459836041190391607507974575740947775381144989578730172143027426652305219179819942571374460027429802672368130567255088516794883918432718317818340292608465152206083372417265474935295605887833111396009927871730996038745696091648283703440767147141989841372087029579461625438294597007759664114888886768968956219038743722656743418123381866008449384512531769813335803163323141693769819861143223068075439855132280331871297515196839090768960364345860235415459234017052644828209894963599847418321730600746760790237353467397208483948557544798645984363542858489008333807357467465064129044501944999769540222468075277342047,5642219814912)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.28; p = G.30; q = G.31; r = G.32; s = G.33;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(3071509554116860662777085965201911957027956375915071123623484702743302552131634202988790116773148852898033845815605681133004417367104946555845491593913046685122629079108659345151649509258362750011124287952054473693660863667245832030079431994242391573869065998590469141233805564402779538787731908450764523922316092531051028623665571561229322037829965665310916160519074911437756166798946555598963163813833518815042740420471549354970647533449262896827425806648928822468309307059493683995515849831143927234039485976512864208769513283952460322966025436953230122564522199916372961239598601169451604340457370980360207317210882106060878251367865220834816659877228362235360739909461767773916227962071588321223561665142951526419802971824043261016145275713571415456024714262120216301403560302952982470462089242176354390884065586428400120216280730954791901306240471976963648513292881590544646542471339606214494505348324357562198775611012365461856369546646656026438296708432241114961162271938265818401316791607940648297259555852411727301255675320566618180791131451339251483541187376619838125979630151831942823591758024946440873767033529177527952279425014277768757568066001496701645482193994285421396412916195235914745995582421252067660229429784919208379423163642971083474127693629744792078172481628372832927639229322763556665875655165995285908011659536589627417195738508448499130654503771319743305942528508043390295941753830299516817074042953203866575392189611759305328038067821578164087899609026830872496281197876986570058097470014716879847794176609700177976176349943567997605628068592774635706571084025197062795103414293102922850011152105323323341031067634504354284013122861372815237380745331177140210160261431652219738475004039226328172076024085512860995568944509543845136998328155181544937677004351896097653747955865539839781330161169636733482051095071622981546209559750175271206721574151680438284483824138643282057916353506871756911168407140613049616107175752194950168450236908929329982883753719394579513009740433924908835139540685673055950140172129940188387389924727529723727921129350407109880198443082996819587770398263628671011901904966208107783911956528062139161608638054559662995639690550488309201096820344543433567101341219590582587216433659578204862444644095190745073408345292020237490005332843831114385280660567577113824793975394272561382280365856818844393175236625594440192061141581108360190739911032134070545686483291816435175937571113379816574580002549212355013111243716164908229512276467335556641395408516519232157608048513101231166723365889854990529640566243211252214458020226260783471531036207893288616363693756746842666381897858798208698371586779565449697671446054555032554821991491979900070487643076667579215221519736140201547141374196651215987970934464924828949528833345842083236980620905896752879384974947243124826433822687601109933260464929511238551223586700440185769699217988836259243748130548873431847938185625869291343224420426850239586374762820875413569374610307637759322306236456774654554743601717669787815190401959434794342146208307524003724359981105287907679454233308653892990660092119653298052663234325369378294441074331559430538722969488714860844396033435030576807506425091206825837013024329838090631712569294865773139820991937707066318742583891171987540185458087349786827120753789777520084599631043320954196911021524689608925189726458759827291760925299174130023830622584934899122016969735615670881291439438517132969749353601723367823552032796082471508617288197264531046670986585742637072140485703068783320927196964215240190713082068588576541460779644270442221953903116120938539929147006343856446837918786876790375500194275291992233475418197958571216251410933248033329398579279996057866311045214233767068330177565974572449200485909468555940523256880299463439176020725752497029457928865382929259478584607598553173420296366645165157939729775546715603913788794982035736702607986573377174628459691963513314375118556437334423774259242936193423027870824855161414104204816810512374749870650940975686687367481704434887641867414060275696276254959462316232762126000365116578294571002278538175421277847969359345481322622322854748209706771426354915638011484386791753099509678715243515293686190220964154296506997142510118381881591542770178477376976449326503599332492472748674046012423914012975801917356812511094691930226239355177809788580638550346585313843229459836041190391607507974575740947775381144989578730172143027426652305219179819942571374460027429802672368130567255088516794883918432718317818340292608465152206083372417265474935295605887833111396009927871730996038745696091648283703440767147141989841372087029579461625438294597007759664114888886768968956219038743722656743418123381866008449384512531769813335803163323141693769819861143223068075439855132280331871297515196839090768960364345860235415459234017052644828209894963599847418321730600746760790237353467397208483948557544798645984363542858489008333807357467465064129044501944999769540222468075277342047,5642219814912)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.28; p = G.30; q = G.31; r = G.32; s = G.33;
 
Permutation group:Degree $36$ $\langle(1,35,15,10,3,36,13,12)(2,34,14,11)(4,33,17,7,29,20,5,31,18,8,30,21,6,32,16,9,28,19) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,35,15,10,3,36,13,12)(2,34,14,11)(4,33,17,7,29,20,5,31,18,8,30,21,6,32,16,9,28,19)(22,26,23,25)(24,27), (1,8,2,9)(3,7)(4,35,5,36,6,34)(10,30)(11,29)(12,28)(13,33,15,32,14,31)(16,24,17,22,18,23)(19,26)(20,25)(21,27), (1,10,3,11)(2,12)(4,19,29,31,18,7,6,21,30,33,17,8)(5,20,28,32,16,9)(13,36,14,34,15,35)(22,27,23,26,24,25) >;
 
Copy content gap:G := Group( (1,35,15,10,3,36,13,12)(2,34,14,11)(4,33,17,7,29,20,5,31,18,8,30,21,6,32,16,9,28,19)(22,26,23,25)(24,27), (1,8,2,9)(3,7)(4,35,5,36,6,34)(10,30)(11,29)(12,28)(13,33,15,32,14,31)(16,24,17,22,18,23)(19,26)(20,25)(21,27), (1,10,3,11)(2,12)(4,19,29,31,18,7,6,21,30,33,17,8)(5,20,28,32,16,9)(13,36,14,34,15,35)(22,27,23,26,24,25) );
 
Copy content sage:G = PermutationGroup(['(1,35,15,10,3,36,13,12)(2,34,14,11)(4,33,17,7,29,20,5,31,18,8,30,21,6,32,16,9,28,19)(22,26,23,25)(24,27)', '(1,8,2,9)(3,7)(4,35,5,36,6,34)(10,30)(11,29)(12,28)(13,33,15,32,14,31)(16,24,17,22,18,23)(19,26)(20,25)(21,27)', '(1,10,3,11)(2,12)(4,19,29,31,18,7,6,21,30,33,17,8)(5,20,28,32,16,9)(13,36,14,34,15,35)(22,27,23,26,24,25)'])
 
Transitive group: 36T120220 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^{12}$ . $(C_2^{10}.S_3^4:D_4)$ $(C_3^{11}.D_6)$ . $(C_2^9.S_3\wr C_2^2)$ (2) $(C_3^{12}.C_2^6.C_2^4)$ . $(S_3^4:D_4)$ (2) $(C_3^{12}.C_2^6.C_2^5)$ . $(S_3\wr C_2^2)$ all 45

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{2} \times C_{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 179 normal subgroups (71 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^6.C_2^6.C_2^4.C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

The character tables for this group have not been computed.