Show commands: Magma
Group invariants
Abstract group: | $C_3^{12}.C_2^8.C_3^4.C_2^6.C_2^2$ |
| |
Order: | $2821109907456=2^{16} \cdot 3^{16}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $119930$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,23,25,34,15,12)(2,24,26,36,13,10,3,22,27,35,14,11)(4,19,6,21)(5,20)(7,18,8,17)(9,16)(28,33,30,31)(29,32)$, $(1,27,2,25)(3,26)(4,29,18)(5,28,17,6,30,16)(7,21,8,19,9,20)(10,12)(13,14,15)(22,23)(31,32)(34,35)$, $(1,21,15,7,26,32,3,20,14,9,27,31,2,19,13,8,25,33)(4,23,18,35,30,11)(5,22,16,34,28,12,6,24,17,36,29,10)$, $(1,29,25,16,13,5)(2,30,26,18,15,6)(3,28,27,17,14,4)(7,11,20,35,32,23,8,12,21,34,33,24)(9,10,19,36,31,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_4$ x 8, $C_2^2$ x 35 $8$: $D_{4}$ x 8, $C_4\times C_2$ x 28, $C_2^3$ x 15 $16$: $D_4\times C_2$ x 12, $C_2^2:C_4$ x 16, $C_4\times C_2^2$ x 14, $C_2^4$ $32$: $C_2^3 : C_4 $ x 8, $Q_8:C_2^2$ x 4, $C_2 \times (C_2^2:C_4)$ x 12, $C_2^2 \times D_4$ x 2, 32T34 $64$: 16T68 x 2, 16T76 x 12, 16T87 x 4, 32T262 $128$: 32T992, 32T1107 x 2 $256$: 16T470 $2592$: 12T242 $5184$: 24T7639 x 2, 24T7644 $20736$: 24T12494 $663552$: 16T1921 $1327104$: 24T21661, 24T21663 x 2 $5308416$: 24T23282 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$
Degree 6: None
Degree 9: None
Degree 12: 12T242
Degree 18: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed