Presentation: |
${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid h^{6}= \!\cdots\! \rangle}$
|
magma:G := PCGroup([32, 2, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 64, 34825003307041, 74993185568642, 41489806639714, 258, 279301681800195, 116444865282595, 20377934937187, 436715491383044, 16886967348516, 421422925508, 32064798667940, 7811790163332, 122151642547205, 62692889705509, 20969982779973, 56100002016101, 13867524727813, 549, 293210975748102, 255502164112422, 79920103173190, 31583279961958, 7750980988038, 6415941365766, 201985672122375, 111185662599207, 50928484947015, 84173269530727, 5583002551431, 22530836006567, 3102596048839, 743, 415954103869448, 249153093863464, 105584234987592, 44477998649960, 18966630041992, 13692495049512, 8437093857992, 392737984392, 578178424401929, 249096575508521, 100005544345673, 1129573739625, 53422139911817, 5266035429289, 13020592671561, 834517668713, 61280033545, 937, 203529601273866, 149865889738794, 100797609949770, 123480142866538, 14119415304330, 2599668910250, 4517565377098, 4685237411946, 2366267393162, 106623095370, 156137988562955, 258813453754411, 34081243066443, 20697901830251, 54316387593355, 26404153210539, 13976931801803, 2725564923883, 2712773607819, 272300205611, 457722152395, 1131, 296764607746060, 571415412252716, 231487004636236, 95194769799276, 36509561727116, 16859035395244, 11729534559180, 925147012844, 2923466143372, 633745986732, 133400669708, 18865447308, 441797804195341, 241415487258669, 165630334464077, 36709865128045, 20621910113421, 30517603587245, 7586341701325, 338456531181, 1459035632141, 486228460333, 387636048909, 153011177453, 20324200909, 1325, 1274364223488014, 603854867497006, 336701486776398, 20014582947950, 19763038679182, 27052030909614, 16263297469646, 1241573598958, 2546029325070, 993533990702, 121294, 102926874606, 24186473678, 1353802529636367, 39560609267759, 218112120078415, 59211202756719, 8276024918159, 5814757933231, 4679713751247, 1873385791727, 557257937167, 142533955887, 48138983759, 44296096111, 20897916303, 3871620527, 2149910479, 1519, 922775118151696, 94913872920624, 13172059275344, 23772326363248, 23728468230288, 16920752, 986861574384, 1410320, 164781029680, 164781264720, 4568804016, 414265882305041, 461973415108657, 49128983488593, 128482832074865, 29347916931217, 4650292353201, 569631688913, 2006251670257, 1149370187025, 729279200177, 53700092113, 32419450737, 33668525201, 969221809, 259665, 806316401, 403130833, 1713, 254108862775314, 21208417173554, 52942145273938, 2058752360562, 514688090290, 332913328338, 18911474, 525682, 15090, 574461671961619, 152494728192051, 381202200207443, 209038001909875, 82888307389587, 14959268974259, 6232405524691, 3989396632563, 2195072461715, 438795544627, 397040146899, 259134474611, 30646564243, 28486426035, 18005553107, 985951219, 15041843, 1907, 1480712487174164, 129159621771316, 212199004717140, 29310132289652, 11703134306452, 732151333044, 8776974495956, 2194261042420, 609561760020, 386768535860, 213330039892, 60951647604, 15238347668, 1881218804, 16692, 711156082779669, 42295313313845, 69191582220373, 180873578907765, 108349088196245, 9550527402421, 2729397648597, 4358152808309, 3039028090837, 120884430261, 436396695317, 214094555509, 15965808021, 30485487029, 20036409301, 1281747957, 213625141, 2809589, 2101, 77063994998806, 289092173561910, 136123492515926, 6408721907830, 16911180103830, 20026534846646, 1023571427542, 267842765046, 356093522230, 255927195990, 33388775798, 33383052694, 1240013238, 2679064054, 446511158, 5741430, 2155845730959383, 56104202797111, 473548126888023, 23499407425655, 25356928352407, 12685319995575, 10034482839767, 1556963721463, 836529389847, 143841153335, 129645453655, 50988663159, 48767091095, 12905423287, 3227849175, 1075950071, 358484535, 59858551, 14944407, 11967671, 2989015, 2295, 1130006362521624, 278642869862456, 1194393688, 69660717465720, 17415179366552, 483754982712, 241877145944, 115832, 19896, 1443411474186265, 396712037449785, 81561741281369, 16381832822905, 86190438776985, 68791340427449, 10204188254425, 9418904681721, 3830384443673, 501474834745, 315252228441, 63389454713, 48386378137, 9820901817, 8753412569, 1986177529, 389256761, 73502841, 19499417, 4463545, 554841, 455033, 2489, 2333789363994650, 1078857398845498, 130541797933146, 44048453640314, 112433284528282, 40999457913018, 2673129019610, 6710375716090, 5443407028506, 482775759674, 315156428122, 92472938874, 43777511834, 859963898, 143327802, 18289786, 2924474, 664314, 1889718030434331, 1118813742563387, 57356787253339, 41755004928123, 112690666561691, 41536738123963, 2772091994331, 6922789687547, 5663073927451, 506676087099, 329838760283, 97904443771, 45900546459, 919683579, 153281083, 19741307, 3290811, 710395, 32525917618204, 355529505374268, 171783602454620, 8080216031356, 20200540078236, 25250675097788, 1010027004124, 476957196604, 294591209820, 46760509820, 44422484380, 3247258108, 541210172, 2506364, 34236, 52222710251549, 133741506723901, 166407255982173, 25076532510845, 48063353979037, 24031676989629, 2089711042781, 1393140695293, 116095058237, 130606940509, 111257764221, 9674588573, 3090493949, 515082813, 2385405, 69949, 61638258327582, 103649667711038, 529129639821406, 77737250783358, 8637472309406, 3239052116158, 12416366444766, 3239052116222, 89973670206, 59982446942, 555393534, 92566078, 429310, 411518, 713991294812191, 1335773195403327, 657149625630815, 240734712103039, 42930529763487, 41774731002047, 21567881871583, 13026917007615, 6492771827999, 1043422249279, 743008371039, 407622648191, 118674948511, 318505599, 53084863, 738111]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.3, G.5, G.6, G.8, G.10, G.12, G.14, G.16, G.18, G.20, G.22, G.24, G.26, G.28, G.29, G.30, G.31, G.32]); AssignNames(~G, ["a", "a2", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "n2", "o", "p", "q", "r", "s"]);
gap:G := PcGroupCode(6731541697371335745728527020002922513960218612157344283260424724999324170952262825666291885989341153798194861051973673547406871178818516707204753339242706843260094294290749592628117227285717749638460116707798161602497616157435541009770724949121670930281170901324934007455581961963551866377664584431886008088497195297382819346706981927971540159847959794982490904622977531964296597011644041872292884192168143458044244449196010854785784847937216768104801483954469426509770280464674464036118295151471346628835849195504677460038729248351908748515660977676200572991208602955783911968402956581919720816531585071488694186698415405957313157503405018419935329753824289961952019172155924397816070977719085772580161294852370371267856455379104383923506672944753968052748504535326694316385941357691046715370471145321172840538475807187258911968405435620740606995911672734015988952669287015995822334389439923257747076372148027444082549453316150064867177420844226176018248458217163266699602108223519312603255921849300332051902781806821642133163463283420075027172046395621651480576253449421872777910019683628144335616946522218142987068596571136918535165746493348498614744902731970068038737873550524306221224317824974510514724936484564410988616697408119150351831286024693153107675167208168367612277613578194450760791041019411572300050298776193495146167182390020612278481850075121233354879413397868712545486295285849710523939402342191539499100591201498464679247109096951050479552618020849613276460744845872789692782824605805010379135760660712499644796070147447531497152557014121819903257742464870295584498302773672060666263597283342998409542041701151540378392337422182610539546441169933835914261790281095766317251905302347657000224468863690866941545004427533835345177615451018358864402740293766843954302022265089148149436801423394427310234772992438500458574242098770573112246279056518633916906645917311038799446858450013050158641766505426811464786798089652713087008761091012061567245277472443670668482346019117575921840264186621995692614587513761961439689298802905154624474161094311976522044212128548206392864392876000057451275783564280061128157038185669048157985503521382923903528081742852968543283319339444200812548661246800468190545497745541199999554040754086189018447513953074340411474108921937678870923282366107043215030935798748792680510970200124733235673296463703964706498311963591710159260585548130719620314343057616308453764434737776844262109738200083713865735524540644947778542056956449017225440813939244671471277920113135618195335539379654762676264415110612153628488447583335123276668894581633765522338109663310030157157112785285242625874572214977597895231967845730812658765278591689343493907072355402578601532860294441895108723275695660717921378822874575563381480566820335834895925891351714665962093975590130732310137049582091158874590044568683157947542373159271827643450363679701533385022392697789785166047568708532791196470687771787970964179258529172517885437403250295036150752383378907155383525500897844511286278240534724015703653980755559416938757742329010258440876560058105814825788310044209734303415017975382539462750838844170837928897584709415785224627654724999680976797238196757924536862581807372776276839998745599106392137511509093372112331662334885872456679595860694067724849076730038600924336469736125082031559590105742952434145572529446161675324710015107803465668801492135210514736957132642622876292745685246984352837764915580201553559542147927138140696989845790776923815668080181013168756349949109079622894098681667198377275605488991186255214232868324460856282798308854131652289802503727952433063481953536455979929241379903166328073818502927552381276341139421308964111492533997343529991152349158468188666104429731888198298838259287452311776003098316827416187112751789290314545347770767700719179287087336829439824499905997376620585782661401079163903808857164393648499329082333559415400777216539313405304529365006783770789032032939497590951120667009666351921070410479284474724918961938889070563448136763393169716532604352325584184459424461027427418785026500745196470636661608107676170852469568403799246075832190038070665567604116360112069815190010639309080008402501554472872037278650807735546222002022523446932485694659621375615801440260153893400269717762117911521898892069659532870780404210845792163685183284588248551943879604600535555463205371469664362247710442920171875928093517992359369190399880120002817268735436102524098105627179528484848411879734939982409089819900756449622413082042173280911632691002830996807094443938119921754070275931662540834245282424441535890340438769368146404219922669201107434385302857566150892590404902281483019609962229775007611149478353491808927982331554739082442377653387466284260265131882316633426892589262685865614041275060809603705134839174545928330033952309207351967659210879691411215604895386512094426577088421449172066824126545850250514328492745569642777061561231144865560879903410609374434447716069661125311,2821109907456); a := G.1; b := G.3; c := G.5; d := G.6; e := G.8; f := G.10; g := G.12; h := G.14; i := G.16; j := G.18; k := G.20; l := G.22; m := G.24; n := G.26; o := G.28; p := G.29; q := G.30; r := G.31; s := G.32;
sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(6731541697371335745728527020002922513960218612157344283260424724999324170952262825666291885989341153798194861051973673547406871178818516707204753339242706843260094294290749592628117227285717749638460116707798161602497616157435541009770724949121670930281170901324934007455581961963551866377664584431886008088497195297382819346706981927971540159847959794982490904622977531964296597011644041872292884192168143458044244449196010854785784847937216768104801483954469426509770280464674464036118295151471346628835849195504677460038729248351908748515660977676200572991208602955783911968402956581919720816531585071488694186698415405957313157503405018419935329753824289961952019172155924397816070977719085772580161294852370371267856455379104383923506672944753968052748504535326694316385941357691046715370471145321172840538475807187258911968405435620740606995911672734015988952669287015995822334389439923257747076372148027444082549453316150064867177420844226176018248458217163266699602108223519312603255921849300332051902781806821642133163463283420075027172046395621651480576253449421872777910019683628144335616946522218142987068596571136918535165746493348498614744902731970068038737873550524306221224317824974510514724936484564410988616697408119150351831286024693153107675167208168367612277613578194450760791041019411572300050298776193495146167182390020612278481850075121233354879413397868712545486295285849710523939402342191539499100591201498464679247109096951050479552618020849613276460744845872789692782824605805010379135760660712499644796070147447531497152557014121819903257742464870295584498302773672060666263597283342998409542041701151540378392337422182610539546441169933835914261790281095766317251905302347657000224468863690866941545004427533835345177615451018358864402740293766843954302022265089148149436801423394427310234772992438500458574242098770573112246279056518633916906645917311038799446858450013050158641766505426811464786798089652713087008761091012061567245277472443670668482346019117575921840264186621995692614587513761961439689298802905154624474161094311976522044212128548206392864392876000057451275783564280061128157038185669048157985503521382923903528081742852968543283319339444200812548661246800468190545497745541199999554040754086189018447513953074340411474108921937678870923282366107043215030935798748792680510970200124733235673296463703964706498311963591710159260585548130719620314343057616308453764434737776844262109738200083713865735524540644947778542056956449017225440813939244671471277920113135618195335539379654762676264415110612153628488447583335123276668894581633765522338109663310030157157112785285242625874572214977597895231967845730812658765278591689343493907072355402578601532860294441895108723275695660717921378822874575563381480566820335834895925891351714665962093975590130732310137049582091158874590044568683157947542373159271827643450363679701533385022392697789785166047568708532791196470687771787970964179258529172517885437403250295036150752383378907155383525500897844511286278240534724015703653980755559416938757742329010258440876560058105814825788310044209734303415017975382539462750838844170837928897584709415785224627654724999680976797238196757924536862581807372776276839998745599106392137511509093372112331662334885872456679595860694067724849076730038600924336469736125082031559590105742952434145572529446161675324710015107803465668801492135210514736957132642622876292745685246984352837764915580201553559542147927138140696989845790776923815668080181013168756349949109079622894098681667198377275605488991186255214232868324460856282798308854131652289802503727952433063481953536455979929241379903166328073818502927552381276341139421308964111492533997343529991152349158468188666104429731888198298838259287452311776003098316827416187112751789290314545347770767700719179287087336829439824499905997376620585782661401079163903808857164393648499329082333559415400777216539313405304529365006783770789032032939497590951120667009666351921070410479284474724918961938889070563448136763393169716532604352325584184459424461027427418785026500745196470636661608107676170852469568403799246075832190038070665567604116360112069815190010639309080008402501554472872037278650807735546222002022523446932485694659621375615801440260153893400269717762117911521898892069659532870780404210845792163685183284588248551943879604600535555463205371469664362247710442920171875928093517992359369190399880120002817268735436102524098105627179528484848411879734939982409089819900756449622413082042173280911632691002830996807094443938119921754070275931662540834245282424441535890340438769368146404219922669201107434385302857566150892590404902281483019609962229775007611149478353491808927982331554739082442377653387466284260265131882316633426892589262685865614041275060809603705134839174545928330033952309207351967659210879691411215604895386512094426577088421449172066824126545850250514328492745569642777061561231144865560879903410609374434447716069661125311,2821109907456)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.28; p = G.29; q = G.30; r = G.31; s = G.32;
sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups
G = gap.new('PcGroupCode(6731541697371335745728527020002922513960218612157344283260424724999324170952262825666291885989341153798194861051973673547406871178818516707204753339242706843260094294290749592628117227285717749638460116707798161602497616157435541009770724949121670930281170901324934007455581961963551866377664584431886008088497195297382819346706981927971540159847959794982490904622977531964296597011644041872292884192168143458044244449196010854785784847937216768104801483954469426509770280464674464036118295151471346628835849195504677460038729248351908748515660977676200572991208602955783911968402956581919720816531585071488694186698415405957313157503405018419935329753824289961952019172155924397816070977719085772580161294852370371267856455379104383923506672944753968052748504535326694316385941357691046715370471145321172840538475807187258911968405435620740606995911672734015988952669287015995822334389439923257747076372148027444082549453316150064867177420844226176018248458217163266699602108223519312603255921849300332051902781806821642133163463283420075027172046395621651480576253449421872777910019683628144335616946522218142987068596571136918535165746493348498614744902731970068038737873550524306221224317824974510514724936484564410988616697408119150351831286024693153107675167208168367612277613578194450760791041019411572300050298776193495146167182390020612278481850075121233354879413397868712545486295285849710523939402342191539499100591201498464679247109096951050479552618020849613276460744845872789692782824605805010379135760660712499644796070147447531497152557014121819903257742464870295584498302773672060666263597283342998409542041701151540378392337422182610539546441169933835914261790281095766317251905302347657000224468863690866941545004427533835345177615451018358864402740293766843954302022265089148149436801423394427310234772992438500458574242098770573112246279056518633916906645917311038799446858450013050158641766505426811464786798089652713087008761091012061567245277472443670668482346019117575921840264186621995692614587513761961439689298802905154624474161094311976522044212128548206392864392876000057451275783564280061128157038185669048157985503521382923903528081742852968543283319339444200812548661246800468190545497745541199999554040754086189018447513953074340411474108921937678870923282366107043215030935798748792680510970200124733235673296463703964706498311963591710159260585548130719620314343057616308453764434737776844262109738200083713865735524540644947778542056956449017225440813939244671471277920113135618195335539379654762676264415110612153628488447583335123276668894581633765522338109663310030157157112785285242625874572214977597895231967845730812658765278591689343493907072355402578601532860294441895108723275695660717921378822874575563381480566820335834895925891351714665962093975590130732310137049582091158874590044568683157947542373159271827643450363679701533385022392697789785166047568708532791196470687771787970964179258529172517885437403250295036150752383378907155383525500897844511286278240534724015703653980755559416938757742329010258440876560058105814825788310044209734303415017975382539462750838844170837928897584709415785224627654724999680976797238196757924536862581807372776276839998745599106392137511509093372112331662334885872456679595860694067724849076730038600924336469736125082031559590105742952434145572529446161675324710015107803465668801492135210514736957132642622876292745685246984352837764915580201553559542147927138140696989845790776923815668080181013168756349949109079622894098681667198377275605488991186255214232868324460856282798308854131652289802503727952433063481953536455979929241379903166328073818502927552381276341139421308964111492533997343529991152349158468188666104429731888198298838259287452311776003098316827416187112751789290314545347770767700719179287087336829439824499905997376620585782661401079163903808857164393648499329082333559415400777216539313405304529365006783770789032032939497590951120667009666351921070410479284474724918961938889070563448136763393169716532604352325584184459424461027427418785026500745196470636661608107676170852469568403799246075832190038070665567604116360112069815190010639309080008402501554472872037278650807735546222002022523446932485694659621375615801440260153893400269717762117911521898892069659532870780404210845792163685183284588248551943879604600535555463205371469664362247710442920171875928093517992359369190399880120002817268735436102524098105627179528484848411879734939982409089819900756449622413082042173280911632691002830996807094443938119921754070275931662540834245282424441535890340438769368146404219922669201107434385302857566150892590404902281483019609962229775007611149478353491808927982331554739082442377653387466284260265131882316633426892589262685865614041275060809603705134839174545928330033952309207351967659210879691411215604895386512094426577088421449172066824126545850250514328492745569642777061561231144865560879903410609374434447716069661125311,2821109907456)'); a = G.1; b = G.3; c = G.5; d = G.6; e = G.8; f = G.10; g = G.12; h = G.14; i = G.16; j = G.18; k = G.20; l = G.22; m = G.24; n = G.26; o = G.28; p = G.29; q = G.30; r = G.31; s = G.32;
|
Permutation group: | Degree $36$
$\langle(1,23,25,34,15,12)(2,24,26,36,13,10,3,22,27,35,14,11)(4,19,6,21)(5,20)(7,18,8,17) \!\cdots\! \rangle$
|
magma:G := PermutationGroup< 36 | (1,23,25,34,15,12)(2,24,26,36,13,10,3,22,27,35,14,11)(4,19,6,21)(5,20)(7,18,8,17)(9,16)(28,33,30,31)(29,32), (1,27,2,25)(3,26)(4,29,18)(5,28,17,6,30,16)(7,21,8,19,9,20)(10,12)(13,14,15)(22,23)(31,32)(34,35), (1,21,15,7,26,32,3,20,14,9,27,31,2,19,13,8,25,33)(4,23,18,35,30,11)(5,22,16,34,28,12,6,24,17,36,29,10), (1,29,25,16,13,5)(2,30,26,18,15,6)(3,28,27,17,14,4)(7,11,20,35,32,23,8,12,21,34,33,24)(9,10,19,36,31,22) >;
gap:G := Group( (1,23,25,34,15,12)(2,24,26,36,13,10,3,22,27,35,14,11)(4,19,6,21)(5,20)(7,18,8,17)(9,16)(28,33,30,31)(29,32), (1,27,2,25)(3,26)(4,29,18)(5,28,17,6,30,16)(7,21,8,19,9,20)(10,12)(13,14,15)(22,23)(31,32)(34,35), (1,21,15,7,26,32,3,20,14,9,27,31,2,19,13,8,25,33)(4,23,18,35,30,11)(5,22,16,34,28,12,6,24,17,36,29,10), (1,29,25,16,13,5)(2,30,26,18,15,6)(3,28,27,17,14,4)(7,11,20,35,32,23,8,12,21,34,33,24)(9,10,19,36,31,22) );
sage:G = PermutationGroup(['(1,23,25,34,15,12)(2,24,26,36,13,10,3,22,27,35,14,11)(4,19,6,21)(5,20)(7,18,8,17)(9,16)(28,33,30,31)(29,32)', '(1,27,2,25)(3,26)(4,29,18)(5,28,17,6,30,16)(7,21,8,19,9,20)(10,12)(13,14,15)(22,23)(31,32)(34,35)', '(1,21,15,7,26,32,3,20,14,9,27,31,2,19,13,8,25,33)(4,23,18,35,30,11)(5,22,16,34,28,12,6,24,17,36,29,10)', '(1,29,25,16,13,5)(2,30,26,18,15,6)(3,28,27,17,14,4)(7,11,20,35,32,23,8,12,21,34,33,24)(9,10,19,36,31,22)'])
|
Transitive group: |
36T119930 |
|
|
|
more information |
Direct product: |
not computed |
Semidirect product: |
not computed |
Trans. wreath product: |
not isomorphic to a non-trivial transitive wreath product |
Possibly split product: |
$C_3^{12}$ . $(C_2^{10}.C_3:S_3^3:D_4)$ |
$(C_3^{12}.C_2^6.A_4.C_3^3.C_2^5)$ . $D_4$ (8) |
$(C_3^{12}.C_2^6.C_2^4)$ . $(C_3:S_3^3:D_4)$ (2) |
$(C_3^{12}.C_2^8.C_6^3.C_2^2.S_3)$ . $C_2^2$ (2) |
all 41 |
Elements of the group are displayed as permutations of degree 36.
The character tables for this group have not been computed.