# Group 2821109907456.j downloaded from the LMFDB on 08 October 2025. ## Various presentations of this group are stored in this file: # GPC is polycyclic presentation GPerm is permutation group # GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups # Many characteristics of the group are stored as booleans in a record: # Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, # metacyclic, monomial, nilpotent, perfect, quasisimple, rational, # solvable, supersolvable # Constructions GPC := PcGroupCode(6731541697371335745728527020002922513960218612157344283260424724999324170952262825666291885989341153798194861051973673547406871178818516707204753339242706843260094294290749592628117227285717749638460116707798161602497616157435541009770724949121670930281170901324934007455581961963551866377664584431886008088497195297382819346706981927971540159847959794982490904622977531964296597011644041872292884192168143458044244449196010854785784847937216768104801483954469426509770280464674464036118295151471346628835849195504677460038729248351908748515660977676200572991208602955783911968402956581919720816531585071488694186698415405957313157503405018419935329753824289961952019172155924397816070977719085772580161294852370371267856455379104383923506672944753968052748504535326694316385941357691046715370471145321172840538475807187258911968405435620740606995911672734015988952669287015995822334389439923257747076372148027444082549453316150064867177420844226176018248458217163266699602108223519312603255921849300332051902781806821642133163463283420075027172046395621651480576253449421872777910019683628144335616946522218142987068596571136918535165746493348498614744902731970068038737873550524306221224317824974510514724936484564410988616697408119150351831286024693153107675167208168367612277613578194450760791041019411572300050298776193495146167182390020612278481850075121233354879413397868712545486295285849710523939402342191539499100591201498464679247109096951050479552618020849613276460744845872789692782824605805010379135760660712499644796070147447531497152557014121819903257742464870295584498302773672060666263597283342998409542041701151540378392337422182610539546441169933835914261790281095766317251905302347657000224468863690866941545004427533835345177615451018358864402740293766843954302022265089148149436801423394427310234772992438500458574242098770573112246279056518633916906645917311038799446858450013050158641766505426811464786798089652713087008761091012061567245277472443670668482346019117575921840264186621995692614587513761961439689298802905154624474161094311976522044212128548206392864392876000057451275783564280061128157038185669048157985503521382923903528081742852968543283319339444200812548661246800468190545497745541199999554040754086189018447513953074340411474108921937678870923282366107043215030935798748792680510970200124733235673296463703964706498311963591710159260585548130719620314343057616308453764434737776844262109738200083713865735524540644947778542056956449017225440813939244671471277920113135618195335539379654762676264415110612153628488447583335123276668894581633765522338109663310030157157112785285242625874572214977597895231967845730812658765278591689343493907072355402578601532860294441895108723275695660717921378822874575563381480566820335834895925891351714665962093975590130732310137049582091158874590044568683157947542373159271827643450363679701533385022392697789785166047568708532791196470687771787970964179258529172517885437403250295036150752383378907155383525500897844511286278240534724015703653980755559416938757742329010258440876560058105814825788310044209734303415017975382539462750838844170837928897584709415785224627654724999680976797238196757924536862581807372776276839998745599106392137511509093372112331662334885872456679595860694067724849076730038600924336469736125082031559590105742952434145572529446161675324710015107803465668801492135210514736957132642622876292745685246984352837764915580201553559542147927138140696989845790776923815668080181013168756349949109079622894098681667198377275605488991186255214232868324460856282798308854131652289802503727952433063481953536455979929241379903166328073818502927552381276341139421308964111492533997343529991152349158468188666104429731888198298838259287452311776003098316827416187112751789290314545347770767700719179287087336829439824499905997376620585782661401079163903808857164393648499329082333559415400777216539313405304529365006783770789032032939497590951120667009666351921070410479284474724918961938889070563448136763393169716532604352325584184459424461027427418785026500745196470636661608107676170852469568403799246075832190038070665567604116360112069815190010639309080008402501554472872037278650807735546222002022523446932485694659621375615801440260153893400269717762117911521898892069659532870780404210845792163685183284588248551943879604600535555463205371469664362247710442920171875928093517992359369190399880120002817268735436102524098105627179528484848411879734939982409089819900756449622413082042173280911632691002830996807094443938119921754070275931662540834245282424441535890340438769368146404219922669201107434385302857566150892590404902281483019609962229775007611149478353491808927982331554739082442377653387466284260265131882316633426892589262685865614041275060809603705134839174545928330033952309207351967659210879691411215604895386512094426577088421449172066824126545850250514328492745569642777061561231144865560879903410609374434447716069661125311,2821109907456); a := GPC.1; b := GPC.3; c := GPC.5; d := GPC.6; e := GPC.8; f := GPC.10; g := GPC.12; h := GPC.14; i := GPC.16; j := GPC.18; k := GPC.20; l := GPC.22; m := GPC.24; n := GPC.26; o := GPC.28; p := GPC.29; q := GPC.30; r := GPC.31; s := GPC.32; GPerm := Group( (1,23,25,34,15,12)(2,24,26,36,13,10,3,22,27,35,14,11)(4,19,6,21)(5,20)(7,18,8,17)(9,16)(28,33,30,31)(29,32), (1,27,2,25)(3,26)(4,29,18)(5,28,17,6,30,16)(7,21,8,19,9,20)(10,12)(13,14,15)(22,23)(31,32)(34,35), (1,21,15,7,26,32,3,20,14,9,27,31,2,19,13,8,25,33)(4,23,18,35,30,11)(5,22,16,34,28,12,6,24,17,36,29,10), (1,29,25,16,13,5)(2,30,26,18,15,6)(3,28,27,17,14,4)(7,11,20,35,32,23,8,12,21,34,33,24)(9,10,19,36,31,22) ); # Booleans booleans_2821109907456_j := rec( Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, nilpotent := false, perfect := false, quasisimple := false, solvable := true, supersolvable := false);