Show commands: Magma
Group invariants
| Abstract group: | $C_3^{12}.C_2^8.C_3^4.D_4:D_4$ |
| |
| Order: | $705277476864=2^{14} \cdot 3^{16}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $119057$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,32,15,20,27,9,2,33,14,21,26,7,3,31,13,19,25,8)(4,36,30,11,16,22)(5,34,28,12,17,23)(6,35,29,10,18,24)$, $(1,5,26,17,2,6,25,16,3,4,27,18)(7,10,32,23,8,12,31,24)(9,11,33,22)(13,28,14,30,15,29)(19,36,21,34)(20,35)$, $(1,36,8,29,27,22,32,16,3,34,7,30,26,23,33,18)(2,35,9,28,25,24,31,17)(4,13,12,19)(5,14,11,20,6,15,10,21)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 3 $32$: $C_2^2 \wr C_2$ $64$: $(C_4^2 : C_2):C_2$ $5184$: 12T266 $1327104$: 16T1934 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: None
Degree 9: None
Degree 12: 12T266
Degree 18: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed