Properties

Label 705277476864.ie
Order \( 2^{14} \cdot 3^{16} \)
Exponent \( 2^{4} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{3} \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{16} \cdot 3^{16} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $36$
Trans deg. $36$
Rank $3$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,15,20,27,9,2,33,14,21,26,7,3,31,13,19,25,8)(4,36,30,11,16,22)(5,34,28,12,17,23)(6,35,29,10,18,24), (1,5,26,17,2,6,25,16,3,4,27,18)(7,10,32,23,8,12,31,24)(9,11,33,22)(13,28,14,30,15,29)(19,36,21,34)(20,35), (1,36,8,29,27,22,32,16,3,34,7,30,26,23,33,18)(2,35,9,28,25,24,31,17)(4,13,12,19)(5,14,11,20,6,15,10,21) >;
 
Copy content gap:G := Group( (1,32,15,20,27,9,2,33,14,21,26,7,3,31,13,19,25,8)(4,36,30,11,16,22)(5,34,28,12,17,23)(6,35,29,10,18,24), (1,5,26,17,2,6,25,16,3,4,27,18)(7,10,32,23,8,12,31,24)(9,11,33,22)(13,28,14,30,15,29)(19,36,21,34)(20,35), (1,36,8,29,27,22,32,16,3,34,7,30,26,23,33,18)(2,35,9,28,25,24,31,17)(4,13,12,19)(5,14,11,20,6,15,10,21) );
 
Copy content sage:G = PermutationGroup(['(1,32,15,20,27,9,2,33,14,21,26,7,3,31,13,19,25,8)(4,36,30,11,16,22)(5,34,28,12,17,23)(6,35,29,10,18,24)', '(1,5,26,17,2,6,25,16,3,4,27,18)(7,10,32,23,8,12,31,24)(9,11,33,22)(13,28,14,30,15,29)(19,36,21,34)(20,35)', '(1,36,8,29,27,22,32,16,3,34,7,30,26,23,33,18)(2,35,9,28,25,24,31,17)(4,13,12,19)(5,14,11,20,6,15,10,21)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20839352359188709115503187912231785979618990705237995020906744693770813854496314010385211042862411532666003843468882458023480099378983407010329903035267823986865559751395669319874221606314626702219123698360503735660650958534681072400354717703790740741859252311034608774845564535566012584859464931961659631386133402023235719684678025338783082342972415837272400945682180909836271493578328229561697528165795705701005454854193519933918660720447414952617695772369715570425465703793230849013666713859400497952199700918629902837593632976079680302413876980744775523393872848440216246976931912432865822671080442432908695395075697143268793889703820232425849628483452282415669225314015612825140681220812672503331006305978741185952915606228085589654502730682203382433538163228469077799491616444063369768609468787341877949215313109672989817528275443920435493236708249716899556550743697158963446353817140946191617024390272602204432447008112034885532288084767637330261384425808804128294379755978124655422369000256624550891104018927532553543495427211690639591832355864368911650046093192397310789545330265902523171589204177978236582915919266916411750162186188352183128423220573709207207842716430371334737141842264614033361673296725267134021719223663575053791108172608230607891630292511877611216604953546853028652491014794163042915000801431864991490305806891521878626359231851506092751296823329130183596320799526057941951238284337451944965349532608687635192463981931943177651260015576026511045602800268545501650064445255255318407027760418135737729713355029859074513259718754918511857808730866671440555516995691775842082272744366552973153799775244706644088490093363431681688403988830774658073955868755294384040535223270062527226127015053332840867264199122149950651793173904494027300812528269048857646268332135167573622398196703527005991986139037328857956142936554633804458528671277302121586000703169593457712350888111129259848263417268847994823852622254206858875065526395991760843775140420861123034065119899023629837407277017366737902527724992005233917465713822892705798942039685355603266414093107031885024842191348606978066747547270295155204207782971378524626306775849014027266466405073333808443234338602395904783511743705562972764576137741667262381975511698226095068448190164405378143940813670030973153578139809434398838307444474119293918448311456375402875996940426356924816370640392555927428658386168994788420239428198390832694676860106360953134935661203250049206505036309796953783707163381128465129974239508933203490005361391038950096563485862963705994351700785785640073768088975921361215092531635606640518816225521462675755425601346466561425910232880048126076754293310741978485627644921660089006266841260285504939140428146935306886166574322992740112725994913766057854090575140068300679084575010737947932432126574776689884328777451997297820251150251801569966729255820018477355648530639342985465665718708637431069642010244264949990116857774874368891754996205453549142452693560848691922633239545761002458874863737045185988545654616616913510515649097825090891687523403145568871734681124082688691097797194137793764513813182434227608594689271121964719468597555879728371504175098796801769926203243579114451858076858892647639865037080673565591055008797968333565270731382112356515470688018744807733909968132933755016270975972309098391983927336198567718269208943887293279699795095472067195633791323080246572608578479849396272076336267657860939231224591641009117520997507851621520895131069803305680435936753028782390852446703950206342914525190094554562084690739648634892180560344280428678858226409878280978489062719168596426442947314196060423895031311314956785353801046811975533402795178828359761671266685747645464543601247890906423650354430741416482492113466781769852602270621484756868608769990636252339306357825531084754422583403668756663336338785753289042826879399072905086588022199671290427492953068557316649705505891678604788965873926718505634639526628378084171641381219065410912648284382768025715330577877214354203250424012339316878445391604650456642015310299268499119347505227291846062876224750908138863915369944067124295866422661607823163562420163967,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 

Group information

Description:$C_3^{12}.C_2^8.C_3^4.D_4:D_4$
Order: \(705277476864\)\(\medspace = 2^{14} \cdot 3^{16} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(2821109907456\)\(\medspace = 2^{16} \cdot 3^{16} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14, $C_3$ x 16
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 16 18 24 36 72
Elements 1 22642767 96059600 3591054000 40155654960 57169089792 3390724800 170781115392 88159684608 92018182464 159012605952 75643186176 15237476352 705277476864
Conjugacy classes   1 17 150 40 1023 16 291 1025 2 551 84 244 22 3466
Divisions 1 17 150 40 1008 16 231 778 2 462 59 142 10 2916
Autjugacy classes 1 16 135 36 888 11 167 679 1 337 50 110 10 2441

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $3$
Inequivalent generating triples: not computed

Minimal degrees of linear representations for this group have not been computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s \mid f^{6}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([30, 2, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 18035367978480, 17405539891561, 151, 25822320812282, 1519312823522, 55810107145923, 35593143107073, 3408588422703, 6305412833373, 8589670832404, 14274000246634, 8080625544664, 2751542267194, 424, 25243768316165, 25408944673955, 28645123334465, 6443852384255, 1608107748635, 79131427394886, 24740884945596, 9558311440086, 14335424180376, 8121599769906, 3462849779286, 606, 133049822062087, 39511716779557, 27910809377347, 7380944375137, 23426009407, 592715959357, 1312900057, 26158349692808, 85393889794118, 36350589736868, 16808211342098, 1269377189048, 1687782627518, 446021337248, 907789758788, 788, 211296603801609, 84962993913639, 12974787244869, 21072910320099, 6267692433729, 6224425959759, 1257955408989, 1098216923619, 210829065701770, 17886657639880, 16286983022710, 19395782754580, 4363724546410, 5955611900200, 1887522508270, 791795391970, 20694582070, 37324490230, 970, 166078283074571, 40549055892521, 28457412814151, 21507214763621, 8692835993411, 4978659038561, 763393922111, 260306900861, 75582724571, 32047075721, 10161677141, 261787908994572, 68489467600362, 25217243663112, 19758714562182, 14391047651892, 1843356380742, 1918438846932, 733204384602, 423764785332, 119382913542, 40424176572, 26120129832, 1152, 204935312977933, 85072774348843, 73142133442633, 27631250841703, 6907662478213, 6886610902243, 348721874113, 596827284703, 2743383193, 32508970543, 62286875078414, 104279747846444, 16170658171274, 15614004949304, 3625976356334, 6852610206164, 2485208976494, 912499919324, 528277626254, 73130996084, 29091296114, 4062579644, 10630842674, 212354, 1334, 143338698178575, 143186781265965, 19247115386955, 26141991321705, 12538893312135, 183996334245, 1365730606275, 180323988735, 292656395805, 93073156155, 29090966745, 12668049015, 356643165680656, 35432304802606, 62093719536556, 39679316501866, 19258452328456, 2626736999206, 2850374137156, 5141608066, 361566270976, 1536071326, 79178601916, 7918686706, 119248576, 83290546, 1459415416, 15865036, 1516, 86084530237457, 95099589181487, 36395800657997, 36940819253867, 18470409627017, 9235355979047, 50388677, 16796417, 466877, 466937, 13397, 339132097658898, 139190715705648, 86869386878478, 12558695051628, 6296518333578, 7671596858088, 2702292425478, 2088061519908, 83069802978, 335525516208, 93997687998, 14287953228, 4370678298, 7508412048, 1260359358, 1253618568, 534837198, 1698, 258963667660819, 211524568473649, 3676343500879, 41045914598509, 10315996185739, 10261310688169, 9331399, 3110659, 3110719, 86779, 86839, 171524498503700, 131620815708530, 25361175440240, 46973168887790, 20635682860940, 8489558186090, 4377703397960, 279505734710, 327529319300, 311687566130, 106783337120, 44923954670, 151638860, 103285130, 2043513800, 19664030, 296405420, 49945700, 1880, 359916191078421, 139984960389171, 62364379714641, 51645959354991, 14555238572301, 14527872184491, 2622821446281, 545631007911, 402463987461, 296012724771, 134462592321, 49335454431, 3801981, 570681, 622750101, 103792161, 3676657029142, 87893697818932, 15485037507442, 47161062242032, 11800795236622, 3316362964042, 10307010472, 423303706342, 240335495572, 37134657682, 35323598152, 23463069502, 15202522, 3130312, 649367782, 18063442, 4523602, 2062, 7524679703, 193298271436853, 174142586963, 24584210933873, 24584003781263, 4097333963723, 1323246274793, 22395263, 3732923, 5079158784024, 4478976054, 66162313728084, 33014532096114, 16507266048144, 45349632174, 738191232264, 229267584294, 123031872324, 38211264354, 1944504, 324564, 54624, 9684, 447488400752665, 274685565173815, 121695039498325, 59237503303795, 4716361728145, 13197952235695, 4391456809165, 770339082505, 239748388135, 84064781125, 70345117795, 6065785, 1011445, 169105, 19405, 420040384819226, 257818099875896, 111016554186326, 54170446153076, 14253467019986, 579568297136, 4530592349486, 1524024772076, 352719746, 58787006, 284485466, 95645366, 7902986, 528512180797467, 124068381696057, 90772527605847, 35149041607797, 16694523014547, 11707460997297, 4007062120527, 2596301890797, 364006379787, 431728496937, 58629796167, 69916815717, 10124352387, 1687392447, 725034747, 85398327, 18658707, 3392607, 218567713443868, 195981846174778, 34466455307608, 46083789976438, 36965240326228, 18824027581618, 3638728409968, 2482988463598, 324401034508, 21918989098, 164717142088, 38601775078, 18076401028, 3012733888, 498364348, 30568888, 2725468, 2318368, 240897245184029, 246711515904059, 122770533081689, 64432757145719, 21205487923349, 3673320192179, 3110984755409, 217678233839, 657569664269, 290237645099, 42662246729, 74323008359, 2015539589, 335923649, 400075709, 118001369, 15714629, 3278489]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s := Explode([G.1, G.2, G.4, G.5, G.7, G.9, G.11, G.13, G.15, G.17, G.19, G.21, G.23, G.25, G.26, G.27, G.28, G.29, G.30]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "e2", "f", "f2", "g", "g2", "h", "h2", "i", "i2", "j", "j2", "k", "k2", "l", "l2", "m", "m2", "n", "o", "p", "q", "r", "s"]);
 
Copy content gap:G := PcGroupCode(20839352359188709115503187912231785979618990705237995020906744693770813854496314010385211042862411532666003843468882458023480099378983407010329903035267823986865559751395669319874221606314626702219123698360503735660650958534681072400354717703790740741859252311034608774845564535566012584859464931961659631386133402023235719684678025338783082342972415837272400945682180909836271493578328229561697528165795705701005454854193519933918660720447414952617695772369715570425465703793230849013666713859400497952199700918629902837593632976079680302413876980744775523393872848440216246976931912432865822671080442432908695395075697143268793889703820232425849628483452282415669225314015612825140681220812672503331006305978741185952915606228085589654502730682203382433538163228469077799491616444063369768609468787341877949215313109672989817528275443920435493236708249716899556550743697158963446353817140946191617024390272602204432447008112034885532288084767637330261384425808804128294379755978124655422369000256624550891104018927532553543495427211690639591832355864368911650046093192397310789545330265902523171589204177978236582915919266916411750162186188352183128423220573709207207842716430371334737141842264614033361673296725267134021719223663575053791108172608230607891630292511877611216604953546853028652491014794163042915000801431864991490305806891521878626359231851506092751296823329130183596320799526057941951238284337451944965349532608687635192463981931943177651260015576026511045602800268545501650064445255255318407027760418135737729713355029859074513259718754918511857808730866671440555516995691775842082272744366552973153799775244706644088490093363431681688403988830774658073955868755294384040535223270062527226127015053332840867264199122149950651793173904494027300812528269048857646268332135167573622398196703527005991986139037328857956142936554633804458528671277302121586000703169593457712350888111129259848263417268847994823852622254206858875065526395991760843775140420861123034065119899023629837407277017366737902527724992005233917465713822892705798942039685355603266414093107031885024842191348606978066747547270295155204207782971378524626306775849014027266466405073333808443234338602395904783511743705562972764576137741667262381975511698226095068448190164405378143940813670030973153578139809434398838307444474119293918448311456375402875996940426356924816370640392555927428658386168994788420239428198390832694676860106360953134935661203250049206505036309796953783707163381128465129974239508933203490005361391038950096563485862963705994351700785785640073768088975921361215092531635606640518816225521462675755425601346466561425910232880048126076754293310741978485627644921660089006266841260285504939140428146935306886166574322992740112725994913766057854090575140068300679084575010737947932432126574776689884328777451997297820251150251801569966729255820018477355648530639342985465665718708637431069642010244264949990116857774874368891754996205453549142452693560848691922633239545761002458874863737045185988545654616616913510515649097825090891687523403145568871734681124082688691097797194137793764513813182434227608594689271121964719468597555879728371504175098796801769926203243579114451858076858892647639865037080673565591055008797968333565270731382112356515470688018744807733909968132933755016270975972309098391983927336198567718269208943887293279699795095472067195633791323080246572608578479849396272076336267657860939231224591641009117520997507851621520895131069803305680435936753028782390852446703950206342914525190094554562084690739648634892180560344280428678858226409878280978489062719168596426442947314196060423895031311314956785353801046811975533402795178828359761671266685747645464543601247890906423650354430741416482492113466781769852602270621484756868608769990636252339306357825531084754422583403668756663336338785753289042826879399072905086588022199671290427492953068557316649705505891678604788965873926718505634639526628378084171641381219065410912648284382768025715330577877214354203250424012339316878445391604650456642015310299268499119347505227291846062876224750908138863915369944067124295866422661607823163562420163967,705277476864); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.9; g := G.11; h := G.13; i := G.15; j := G.17; k := G.19; l := G.21; m := G.23; n := G.25; o := G.26; p := G.27; q := G.28; r := G.29; s := G.30;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20839352359188709115503187912231785979618990705237995020906744693770813854496314010385211042862411532666003843468882458023480099378983407010329903035267823986865559751395669319874221606314626702219123698360503735660650958534681072400354717703790740741859252311034608774845564535566012584859464931961659631386133402023235719684678025338783082342972415837272400945682180909836271493578328229561697528165795705701005454854193519933918660720447414952617695772369715570425465703793230849013666713859400497952199700918629902837593632976079680302413876980744775523393872848440216246976931912432865822671080442432908695395075697143268793889703820232425849628483452282415669225314015612825140681220812672503331006305978741185952915606228085589654502730682203382433538163228469077799491616444063369768609468787341877949215313109672989817528275443920435493236708249716899556550743697158963446353817140946191617024390272602204432447008112034885532288084767637330261384425808804128294379755978124655422369000256624550891104018927532553543495427211690639591832355864368911650046093192397310789545330265902523171589204177978236582915919266916411750162186188352183128423220573709207207842716430371334737141842264614033361673296725267134021719223663575053791108172608230607891630292511877611216604953546853028652491014794163042915000801431864991490305806891521878626359231851506092751296823329130183596320799526057941951238284337451944965349532608687635192463981931943177651260015576026511045602800268545501650064445255255318407027760418135737729713355029859074513259718754918511857808730866671440555516995691775842082272744366552973153799775244706644088490093363431681688403988830774658073955868755294384040535223270062527226127015053332840867264199122149950651793173904494027300812528269048857646268332135167573622398196703527005991986139037328857956142936554633804458528671277302121586000703169593457712350888111129259848263417268847994823852622254206858875065526395991760843775140420861123034065119899023629837407277017366737902527724992005233917465713822892705798942039685355603266414093107031885024842191348606978066747547270295155204207782971378524626306775849014027266466405073333808443234338602395904783511743705562972764576137741667262381975511698226095068448190164405378143940813670030973153578139809434398838307444474119293918448311456375402875996940426356924816370640392555927428658386168994788420239428198390832694676860106360953134935661203250049206505036309796953783707163381128465129974239508933203490005361391038950096563485862963705994351700785785640073768088975921361215092531635606640518816225521462675755425601346466561425910232880048126076754293310741978485627644921660089006266841260285504939140428146935306886166574322992740112725994913766057854090575140068300679084575010737947932432126574776689884328777451997297820251150251801569966729255820018477355648530639342985465665718708637431069642010244264949990116857774874368891754996205453549142452693560848691922633239545761002458874863737045185988545654616616913510515649097825090891687523403145568871734681124082688691097797194137793764513813182434227608594689271121964719468597555879728371504175098796801769926203243579114451858076858892647639865037080673565591055008797968333565270731382112356515470688018744807733909968132933755016270975972309098391983927336198567718269208943887293279699795095472067195633791323080246572608578479849396272076336267657860939231224591641009117520997507851621520895131069803305680435936753028782390852446703950206342914525190094554562084690739648634892180560344280428678858226409878280978489062719168596426442947314196060423895031311314956785353801046811975533402795178828359761671266685747645464543601247890906423650354430741416482492113466781769852602270621484756868608769990636252339306357825531084754422583403668756663336338785753289042826879399072905086588022199671290427492953068557316649705505891678604788965873926718505634639526628378084171641381219065410912648284382768025715330577877214354203250424012339316878445391604650456642015310299268499119347505227291846062876224750908138863915369944067124295866422661607823163562420163967,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(20839352359188709115503187912231785979618990705237995020906744693770813854496314010385211042862411532666003843468882458023480099378983407010329903035267823986865559751395669319874221606314626702219123698360503735660650958534681072400354717703790740741859252311034608774845564535566012584859464931961659631386133402023235719684678025338783082342972415837272400945682180909836271493578328229561697528165795705701005454854193519933918660720447414952617695772369715570425465703793230849013666713859400497952199700918629902837593632976079680302413876980744775523393872848440216246976931912432865822671080442432908695395075697143268793889703820232425849628483452282415669225314015612825140681220812672503331006305978741185952915606228085589654502730682203382433538163228469077799491616444063369768609468787341877949215313109672989817528275443920435493236708249716899556550743697158963446353817140946191617024390272602204432447008112034885532288084767637330261384425808804128294379755978124655422369000256624550891104018927532553543495427211690639591832355864368911650046093192397310789545330265902523171589204177978236582915919266916411750162186188352183128423220573709207207842716430371334737141842264614033361673296725267134021719223663575053791108172608230607891630292511877611216604953546853028652491014794163042915000801431864991490305806891521878626359231851506092751296823329130183596320799526057941951238284337451944965349532608687635192463981931943177651260015576026511045602800268545501650064445255255318407027760418135737729713355029859074513259718754918511857808730866671440555516995691775842082272744366552973153799775244706644088490093363431681688403988830774658073955868755294384040535223270062527226127015053332840867264199122149950651793173904494027300812528269048857646268332135167573622398196703527005991986139037328857956142936554633804458528671277302121586000703169593457712350888111129259848263417268847994823852622254206858875065526395991760843775140420861123034065119899023629837407277017366737902527724992005233917465713822892705798942039685355603266414093107031885024842191348606978066747547270295155204207782971378524626306775849014027266466405073333808443234338602395904783511743705562972764576137741667262381975511698226095068448190164405378143940813670030973153578139809434398838307444474119293918448311456375402875996940426356924816370640392555927428658386168994788420239428198390832694676860106360953134935661203250049206505036309796953783707163381128465129974239508933203490005361391038950096563485862963705994351700785785640073768088975921361215092531635606640518816225521462675755425601346466561425910232880048126076754293310741978485627644921660089006266841260285504939140428146935306886166574322992740112725994913766057854090575140068300679084575010737947932432126574776689884328777451997297820251150251801569966729255820018477355648530639342985465665718708637431069642010244264949990116857774874368891754996205453549142452693560848691922633239545761002458874863737045185988545654616616913510515649097825090891687523403145568871734681124082688691097797194137793764513813182434227608594689271121964719468597555879728371504175098796801769926203243579114451858076858892647639865037080673565591055008797968333565270731382112356515470688018744807733909968132933755016270975972309098391983927336198567718269208943887293279699795095472067195633791323080246572608578479849396272076336267657860939231224591641009117520997507851621520895131069803305680435936753028782390852446703950206342914525190094554562084690739648634892180560344280428678858226409878280978489062719168596426442947314196060423895031311314956785353801046811975533402795178828359761671266685747645464543601247890906423650354430741416482492113466781769852602270621484756868608769990636252339306357825531084754422583403668756663336338785753289042826879399072905086588022199671290427492953068557316649705505891678604788965873926718505634639526628378084171641381219065410912648284382768025715330577877214354203250424012339316878445391604650456642015310299268499119347505227291846062876224750908138863915369944067124295866422661607823163562420163967,705277476864)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.9; g = G.11; h = G.13; i = G.15; j = G.17; k = G.19; l = G.21; m = G.23; n = G.25; o = G.26; p = G.27; q = G.28; r = G.29; s = G.30;
 
Permutation group:Degree $36$ $\langle(1,32,15,20,27,9,2,33,14,21,26,7,3,31,13,19,25,8)(4,36,30,11,16,22)(5,34,28,12,17,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,32,15,20,27,9,2,33,14,21,26,7,3,31,13,19,25,8)(4,36,30,11,16,22)(5,34,28,12,17,23)(6,35,29,10,18,24), (1,5,26,17,2,6,25,16,3,4,27,18)(7,10,32,23,8,12,31,24)(9,11,33,22)(13,28,14,30,15,29)(19,36,21,34)(20,35), (1,36,8,29,27,22,32,16,3,34,7,30,26,23,33,18)(2,35,9,28,25,24,31,17)(4,13,12,19)(5,14,11,20,6,15,10,21) >;
 
Copy content gap:G := Group( (1,32,15,20,27,9,2,33,14,21,26,7,3,31,13,19,25,8)(4,36,30,11,16,22)(5,34,28,12,17,23)(6,35,29,10,18,24), (1,5,26,17,2,6,25,16,3,4,27,18)(7,10,32,23,8,12,31,24)(9,11,33,22)(13,28,14,30,15,29)(19,36,21,34)(20,35), (1,36,8,29,27,22,32,16,3,34,7,30,26,23,33,18)(2,35,9,28,25,24,31,17)(4,13,12,19)(5,14,11,20,6,15,10,21) );
 
Copy content sage:G = PermutationGroup(['(1,32,15,20,27,9,2,33,14,21,26,7,3,31,13,19,25,8)(4,36,30,11,16,22)(5,34,28,12,17,23)(6,35,29,10,18,24)', '(1,5,26,17,2,6,25,16,3,4,27,18)(7,10,32,23,8,12,31,24)(9,11,33,22)(13,28,14,30,15,29)(19,36,21,34)(20,35)', '(1,36,8,29,27,22,32,16,3,34,7,30,26,23,33,18)(2,35,9,28,25,24,31,17)(4,13,12,19)(5,14,11,20,6,15,10,21)'])
 
Transitive group: 36T119057 more information
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_3^{12}.C_2^8.C_3^4.Q_8)$ . $D_4$ (2) $(C_3^{12}.C_2^8.C_3^4.D_4)$ . $D_4$ (2) $C_3^{12}$ . $(A_4^2\wr C_2.C_2^2.D_4)$ $(C_3^{12}.C_2^8.C_3^4.D_8.C_2)$ . $C_2$ (2) all 17

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2}^{3} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: not computed
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 30 normal subgroups (16 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: not computed
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\wr D_4.D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^{12}.C_3^4$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $3466 \times 3466$ character table is not available for this group.

Rational character table

The $2916 \times 2916$ rational character table is not available for this group.