Show commands: Magma
Group invariants
Abstract group: | $C_2^{18}.C_3^3.C_3^3.S_4$ |
| |
Order: | $4586471424=2^{21} \cdot 3^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $103805$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,25,19,8,21,11,33,32,14,4,26,18,6,24,12,36,30,16,3,27,17,7,22,10,35,29,13)(2,28,20,5,23,9,34,31,15)$, $(1,20,34,9,5,16,4,17,33,11,7,15,2,18,36,10,8,13)(3,19,35,12,6,14)(21,23,24)(25,27,28)(29,31,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ $648$: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ $17496$: 27T912 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: None
Degree 9: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$
Degree 12: None
Degree 18: None
Low degree siblings
36T103805 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed