Properties

Label 4586471424.qx
Order \( 2^{21} \cdot 3^{7} \)
Exponent \( 2^{3} \cdot 3^{3} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ 1
$\card{\Aut(G)}$ \( 2^{22} \cdot 3^{8} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2 \cdot 3 \cdot 7 \)
Perm deg. $36$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,25,19,8,21,11,33,32,14,4,26,18,6,24,12,36,30,16,3,27,17,7,22,10,35,29,13)(2,28,20,5,23,9,34,31,15), (1,20,34,9,5,16,4,17,33,11,7,15,2,18,36,10,8,13)(3,19,35,12,6,14)(21,23,24)(25,27,28)(29,31,32) >;
 
Copy content gap:G := Group( (1,25,19,8,21,11,33,32,14,4,26,18,6,24,12,36,30,16,3,27,17,7,22,10,35,29,13)(2,28,20,5,23,9,34,31,15), (1,20,34,9,5,16,4,17,33,11,7,15,2,18,36,10,8,13)(3,19,35,12,6,14)(21,23,24)(25,27,28)(29,31,32) );
 
Copy content sage:G = PermutationGroup(['(1,25,19,8,21,11,33,32,14,4,26,18,6,24,12,36,30,16,3,27,17,7,22,10,35,29,13)(2,28,20,5,23,9,34,31,15)', '(1,20,34,9,5,16,4,17,33,11,7,15,2,18,36,10,8,13)(3,19,35,12,6,14)(21,23,24)(25,27,28)(29,31,32)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(585930450263102919786805258687378042584480176933019584821225534424322091295241309718631463758431477672486765797789929303081536011702598318533297286785078056260015172825912168369281826365384900873239750906794987530405971935769969335496605833727025104842480896226613216870776611630506033990875723457216597817439624465613924769767456873497272852950773000995609272821123103999598704961670821343215909492800800684770088961038410500573841442948352477613170322737590682728216226978327029347138206059728700177020473554964780029575526346514674056232595882889540122833565233942991530105789138137021555771995829558960287519834739807224059209239857344325499144257696063168711199202197834042112991721392481249970734861062947414720988033026525021382161322528659895421763576562369219988481780717251796053563642897578822653900687645882102592207627009054572338254058013810868706152037713577142953725225428180810274244111602820159769023662811202801417868807507820066392452198198394291756571566935680570215433840618256566393440622514722854024795387911194854453028337373216291874183723063427749668046096488812897911868426390582248898490590533061674816013309253891031534889728669189326211906915869821252078859610190230710069603057730838645770525164381669223302798533546258115399412756342133596141464846027724516671394087441867380396980995902011614452831797945896117699471125762512251123633503537894340569007723053396223656479625775676389976829571317460251281379129572732187083223708767674756846087814892308253225404181224737035588893823224616485950323953658073017558806152884108888866266358855894022677306071868660174911444824210668549328462477559403137163799655958914721272698999708111664463419538259743544172087573551904211944590617861759829178118353256418649567682030541015038349564321641127342283680491127994732836590649892546201996719685772199503740266853080926116209694374165450013156676434307703666388499494190051318930940710608431411520964030855577928374575465910559964599023441234037495563699034966224309603371909760541628945972238885281054365877171699638338045737989376831499703986219009011378505114436755436879845983543458184887289677349894408038227778415684659506808950971295053128394659575428365495657933915459683571133727310589402851775014715232913005733905328193709372087663833456907177466317384081619621075642488018647827024461916590712927483574197222281970148593726982641475813351368622080,4586471424)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.7; f = G.10; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22; q = G.23; r = G.24; s = G.25; t = G.26; u = G.27; v = G.28;
 

Group information

Description:$C_2^{18}.C_3^3.C_3^3.S_4$
Order: \(4586471424\)\(\medspace = 2^{21} \cdot 3^{7} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:Group of order \(192631799808\)\(\medspace = 2^{22} \cdot 3^{8} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 21, $C_3$ x 7
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$5$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 27 36
Elements 1 1478655 4800896 219967488 259251840 1003290624 472597632 153280512 992746368 1019215872 459841536 4586471424
Conjugacy classes   1 135 5 344 62 56 52 49 231 6 147 1088
Divisions 1 135 4 344 60 56 12 42 71 1 42 768
Autjugacy classes 1 13 4 22 10 4 12 4 17 1 6 94

Minimal presentations

Permutation degree:$36$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 27 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v \mid e^{18}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([28, 2, 3, 2, 2, 3, 3, 2, 3, 3, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 49048056960, 68466226977, 68182699901, 204141668978, 190511548950, 3762460858, 400851110691, 255541243471, 57736723803, 311, 155204108644, 32987999552, 40000176220, 536, 412166833349, 2147777889, 4269922333, 4501744273, 508899554022, 330440949586, 25203573422, 7818640794, 4355963506, 1761003698, 566, 501826665991, 128879474339, 90298575423, 2675506267, 11098906679, 3699635667, 875, 653460333128, 197900645076, 53380156096, 56623269116, 19035101856, 6345034060, 460445522889, 588449188357, 169880719745, 42834899613, 7788039961, 1238486909, 4086034017, 1603932325, 700843313, 821, 1164758925802, 356953625990, 203538734850, 74754586462, 16094553674, 5364851334, 4269512194, 441485558, 624034722, 1214, 30667883915, 241940127783, 58128295747, 86848651103, 3637255227, 1212418519, 6396014195, 1058176431, 1109838475, 694528642092, 159105688600, 42694836980, 107857720248, 23688359728, 5241665672, 3777844068, 2351231272, 507616436, 353290656, 104363824, 3303620, 187152892429, 346694118665, 6520209765, 19364846353, 15569815589, 8503894881, 6415682293, 107830001, 524670285, 161568553, 14175797, 4518513, 1374179929934, 509202242682, 249198813430, 74062492658, 4191025986, 5560024834, 758237942, 3934617330, 1136993998, 181954346, 5640054, 74617522, 56952419343, 445500228139, 93980259143, 6410420451, 579410623, 5857766363, 5247535287, 631121107, 457712879, 112831755, 74156839, 14934851, 1065996304, 280090524716, 355332168, 133249636, 9870520, 319552340, 1234032, 3016204, 222562664, 68868, 1693052945, 34707585069, 2069286985, 47029433, 4241777109, 435697, 580877, 254016297, 24517, 10722668562, 21445337134, 99284042, 161187522150, 714293178, 2758102, 10112498, 536256270, 230122, 562118, 916993042579, 15999742127, 80158740555, 172806359143, 5361915067, 3270274775, 45965043, 400458511, 238130219, 2177607, 13826598932, 38516954160, 2304433228, 14100936296, 9940154300, 4944167640, 2540404, 44537744, 296436972, 141448, 999014119509, 650197969393, 132549322829, 81276991593, 11690832573, 3009726937, 592897781, 78592017, 324302125, 33382601, 1054564533814, 515012042210, 190494581838, 194400622186, 5017759678, 3722423258, 13910646, 656385682, 222659438, 2936970, 1190781865751, 143333390643, 65088479311, 58002739307, 10889883839, 3447069915, 343139575, 360364307, 302206767, 23611723, 2544282316824, 655274188852, 459580262480, 1241049708, 72576192, 6383059420, 2118009848, 3830676, 27921904, 117667532, 1129779705625, 725530006709, 219961018449, 39671783533, 875557057, 277385693, 420795897, 153264661, 24321329, 5486541, 715526493722, 808207914582, 99043596370, 271100100206, 11867047106, 5590602078, 705438970, 808206614, 207168498, 1633294, 1969057351323, 383523517495, 392558358611, 175063763055, 16183867587, 7652994271, 588639995, 719373591, 450794035, 75791183]); a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v := Explode([G.1, G.2, G.3, G.4, G.7, G.10, G.13, G.14, G.15, G.16, G.17, G.18, G.19, G.20, G.21, G.22, G.23, G.24, G.25, G.26, G.27, G.28]); AssignNames(~G, ["a", "b", "c", "d", "d2", "d6", "e", "e2", "e6", "f", "f2", "f6", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v"]);
 
Copy content gap:G := PcGroupCode(585930450263102919786805258687378042584480176933019584821225534424322091295241309718631463758431477672486765797789929303081536011702598318533297286785078056260015172825912168369281826365384900873239750906794987530405971935769969335496605833727025104842480896226613216870776611630506033990875723457216597817439624465613924769767456873497272852950773000995609272821123103999598704961670821343215909492800800684770088961038410500573841442948352477613170322737590682728216226978327029347138206059728700177020473554964780029575526346514674056232595882889540122833565233942991530105789138137021555771995829558960287519834739807224059209239857344325499144257696063168711199202197834042112991721392481249970734861062947414720988033026525021382161322528659895421763576562369219988481780717251796053563642897578822653900687645882102592207627009054572338254058013810868706152037713577142953725225428180810274244111602820159769023662811202801417868807507820066392452198198394291756571566935680570215433840618256566393440622514722854024795387911194854453028337373216291874183723063427749668046096488812897911868426390582248898490590533061674816013309253891031534889728669189326211906915869821252078859610190230710069603057730838645770525164381669223302798533546258115399412756342133596141464846027724516671394087441867380396980995902011614452831797945896117699471125762512251123633503537894340569007723053396223656479625775676389976829571317460251281379129572732187083223708767674756846087814892308253225404181224737035588893823224616485950323953658073017558806152884108888866266358855894022677306071868660174911444824210668549328462477559403137163799655958914721272698999708111664463419538259743544172087573551904211944590617861759829178118353256418649567682030541015038349564321641127342283680491127994732836590649892546201996719685772199503740266853080926116209694374165450013156676434307703666388499494190051318930940710608431411520964030855577928374575465910559964599023441234037495563699034966224309603371909760541628945972238885281054365877171699638338045737989376831499703986219009011378505114436755436879845983543458184887289677349894408038227778415684659506808950971295053128394659575428365495657933915459683571133727310589402851775014715232913005733905328193709372087663833456907177466317384081619621075642488018647827024461916590712927483574197222281970148593726982641475813351368622080,4586471424); a := G.1; b := G.2; c := G.3; d := G.4; e := G.7; f := G.10; g := G.13; h := G.14; i := G.15; j := G.16; k := G.17; l := G.18; m := G.19; n := G.20; o := G.21; p := G.22; q := G.23; r := G.24; s := G.25; t := G.26; u := G.27; v := G.28;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(585930450263102919786805258687378042584480176933019584821225534424322091295241309718631463758431477672486765797789929303081536011702598318533297286785078056260015172825912168369281826365384900873239750906794987530405971935769969335496605833727025104842480896226613216870776611630506033990875723457216597817439624465613924769767456873497272852950773000995609272821123103999598704961670821343215909492800800684770088961038410500573841442948352477613170322737590682728216226978327029347138206059728700177020473554964780029575526346514674056232595882889540122833565233942991530105789138137021555771995829558960287519834739807224059209239857344325499144257696063168711199202197834042112991721392481249970734861062947414720988033026525021382161322528659895421763576562369219988481780717251796053563642897578822653900687645882102592207627009054572338254058013810868706152037713577142953725225428180810274244111602820159769023662811202801417868807507820066392452198198394291756571566935680570215433840618256566393440622514722854024795387911194854453028337373216291874183723063427749668046096488812897911868426390582248898490590533061674816013309253891031534889728669189326211906915869821252078859610190230710069603057730838645770525164381669223302798533546258115399412756342133596141464846027724516671394087441867380396980995902011614452831797945896117699471125762512251123633503537894340569007723053396223656479625775676389976829571317460251281379129572732187083223708767674756846087814892308253225404181224737035588893823224616485950323953658073017558806152884108888866266358855894022677306071868660174911444824210668549328462477559403137163799655958914721272698999708111664463419538259743544172087573551904211944590617861759829178118353256418649567682030541015038349564321641127342283680491127994732836590649892546201996719685772199503740266853080926116209694374165450013156676434307703666388499494190051318930940710608431411520964030855577928374575465910559964599023441234037495563699034966224309603371909760541628945972238885281054365877171699638338045737989376831499703986219009011378505114436755436879845983543458184887289677349894408038227778415684659506808950971295053128394659575428365495657933915459683571133727310589402851775014715232913005733905328193709372087663833456907177466317384081619621075642488018647827024461916590712927483574197222281970148593726982641475813351368622080,4586471424)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.7; f = G.10; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22; q = G.23; r = G.24; s = G.25; t = G.26; u = G.27; v = G.28;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(585930450263102919786805258687378042584480176933019584821225534424322091295241309718631463758431477672486765797789929303081536011702598318533297286785078056260015172825912168369281826365384900873239750906794987530405971935769969335496605833727025104842480896226613216870776611630506033990875723457216597817439624465613924769767456873497272852950773000995609272821123103999598704961670821343215909492800800684770088961038410500573841442948352477613170322737590682728216226978327029347138206059728700177020473554964780029575526346514674056232595882889540122833565233942991530105789138137021555771995829558960287519834739807224059209239857344325499144257696063168711199202197834042112991721392481249970734861062947414720988033026525021382161322528659895421763576562369219988481780717251796053563642897578822653900687645882102592207627009054572338254058013810868706152037713577142953725225428180810274244111602820159769023662811202801417868807507820066392452198198394291756571566935680570215433840618256566393440622514722854024795387911194854453028337373216291874183723063427749668046096488812897911868426390582248898490590533061674816013309253891031534889728669189326211906915869821252078859610190230710069603057730838645770525164381669223302798533546258115399412756342133596141464846027724516671394087441867380396980995902011614452831797945896117699471125762512251123633503537894340569007723053396223656479625775676389976829571317460251281379129572732187083223708767674756846087814892308253225404181224737035588893823224616485950323953658073017558806152884108888866266358855894022677306071868660174911444824210668549328462477559403137163799655958914721272698999708111664463419538259743544172087573551904211944590617861759829178118353256418649567682030541015038349564321641127342283680491127994732836590649892546201996719685772199503740266853080926116209694374165450013156676434307703666388499494190051318930940710608431411520964030855577928374575465910559964599023441234037495563699034966224309603371909760541628945972238885281054365877171699638338045737989376831499703986219009011378505114436755436879845983543458184887289677349894408038227778415684659506808950971295053128394659575428365495657933915459683571133727310589402851775014715232913005733905328193709372087663833456907177466317384081619621075642488018647827024461916590712927483574197222281970148593726982641475813351368622080,4586471424)'); a = G.1; b = G.2; c = G.3; d = G.4; e = G.7; f = G.10; g = G.13; h = G.14; i = G.15; j = G.16; k = G.17; l = G.18; m = G.19; n = G.20; o = G.21; p = G.22; q = G.23; r = G.24; s = G.25; t = G.26; u = G.27; v = G.28;
 
Permutation group:Degree $36$ $\langle(1,25,19,8,21,11,33,32,14,4,26,18,6,24,12,36,30,16,3,27,17,7,22,10,35,29,13) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 36 | (1,25,19,8,21,11,33,32,14,4,26,18,6,24,12,36,30,16,3,27,17,7,22,10,35,29,13)(2,28,20,5,23,9,34,31,15), (1,20,34,9,5,16,4,17,33,11,7,15,2,18,36,10,8,13)(3,19,35,12,6,14)(21,23,24)(25,27,28)(29,31,32) >;
 
Copy content gap:G := Group( (1,25,19,8,21,11,33,32,14,4,26,18,6,24,12,36,30,16,3,27,17,7,22,10,35,29,13)(2,28,20,5,23,9,34,31,15), (1,20,34,9,5,16,4,17,33,11,7,15,2,18,36,10,8,13)(3,19,35,12,6,14)(21,23,24)(25,27,28)(29,31,32) );
 
Copy content sage:G = PermutationGroup(['(1,25,19,8,21,11,33,32,14,4,26,18,6,24,12,36,30,16,3,27,17,7,22,10,35,29,13)(2,28,20,5,23,9,34,31,15)', '(1,20,34,9,5,16,4,17,33,11,7,15,2,18,36,10,8,13)(3,19,35,12,6,14)(21,23,24)(25,27,28)(29,31,32)'])
 
Transitive group: 36T103805 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^{18}$ . $(C_9^3:S_4)$ $(C_2^{18}.C_3^3.C_3^3)$ . $S_4$ $(C_2^{18}.C_3^3)$ . $(C_3^3:S_4)$ $(C_2^{18}.C_3^3.C_3^2.D_6)$ . $S_3$ all 5

Elements of the group are displayed as permutations of degree 36.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: not computed
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 7 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_1$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^{18}.C_3^3.C_3^3.A_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^9.C_2^6.C_2^6$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_9\wr C_3$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $1088 \times 1088$ character table is not available for this group.

Rational character table

The $768 \times 768$ rational character table is not available for this group.