Show commands: Magma
Group invariants
Abstract group: | $C_5^6.(D_5\times S_7)$ |
| |
Order: | $787500000=2^{5} \cdot 3^{2} \cdot 5^{8} \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $35$ |
| |
Transitive number $t$: | $260$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,23,14)(2,22,15,5,24,13)(3,21,11,4,25,12)(6,17,27,35,7,16,28,34,8,20,29,33,9,19,30,32,10,18,26,31)$, $(1,10,21,2,6,22,3,7,23,4,8,24,5,9,25)(11,12,13,14,15)(16,17,18,19,20)(26,34)(27,35)(28,31)(29,32)(30,33)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $10$: $D_{5}$ $20$: $D_{10}$ $5040$: $S_7$ $10080$: $S_7\times C_2$ $50400$: 35T49 $157500000$: 35T217 Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Degree 7: $S_7$
Low degree siblings
35T260 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed