Show commands: Magma
Group invariants
Abstract group: | $C_2^5:\GL(3,2)$ |
| |
Order: | $5376=2^{8} \cdot 3 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $28$ |
| |
Transitive number $t$: | $312$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,22,6,28,23,17,11,15,8,20,13,10,3,26)(2,21,5,27,24,18,12,16,7,19,14,9,4,25)$, $(1,2)(3,25,17,12)(4,26,18,11)(5,20)(6,19)(7,23,21,10)(8,24,22,9)(13,14)(15,16)(27,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $168$: $\GL(3,2)$ $336$: 14T17 x 3 $672$: 28T84 $1344$: $C_2^3:\GL(3,2)$ $2688$: 14T43 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 7: $\GL(3,2)$
Degree 14: $\GL(3,2) \times C_2$, 14T43 x 2
Low degree siblings
28T311 x 6, 28T312 x 5, 32T397089 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{28}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14}$ | $1$ | $2$ | $14$ | $( 1,16)( 2,15)( 3,18)( 4,17)( 5,20)( 6,19)( 7,22)( 8,21)( 9,23)(10,24)(11,25)(12,26)(13,27)(14,28)$ |
2B | $2^{14}$ | $1$ | $2$ | $14$ | $( 1,15)( 2,16)( 3,17)( 4,18)( 5,19)( 6,20)( 7,21)( 8,22)( 9,24)(10,23)(11,26)(12,25)(13,28)(14,27)$ |
2C | $2^{14}$ | $1$ | $2$ | $14$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)$ |
2D | $2^{8},1^{12}$ | $7$ | $2$ | $8$ | $( 1,15)( 2,16)( 5,19)( 6,20)( 7,21)( 8,22)( 9,24)(10,23)$ |
2E | $2^{6},1^{16}$ | $7$ | $2$ | $6$ | $( 1,15)( 2,16)( 9,24)(10,23)(11,26)(12,25)$ |
2F | $2^{14}$ | $7$ | $2$ | $14$ | $( 1,16)( 2,15)( 3,18)( 4,17)( 5, 6)( 7, 8)( 9,23)(10,24)(11,12)(13,27)(14,28)(19,20)(21,22)(25,26)$ |
2G | $2^{14}$ | $7$ | $2$ | $14$ | $( 1,16)( 2,15)( 3,18)( 4,17)( 5, 6)( 7,22)( 8,21)( 9,10)(11,12)(13,14)(19,20)(23,24)(25,26)(27,28)$ |
2H | $2^{14}$ | $42$ | $2$ | $14$ | $( 1,17)( 2,18)( 3,15)( 4,16)( 5,25)( 6,26)( 7,21)( 8,22)( 9,24)(10,23)(11,20)(12,19)(13,28)(14,27)$ |
2I | $2^{14}$ | $42$ | $2$ | $14$ | $( 1,18)( 2,17)( 3,16)( 4,15)( 5,26)( 6,25)( 7,22)( 8,21)( 9,23)(10,24)(11,19)(12,20)(13,27)(14,28)$ |
2J | $2^{14}$ | $42$ | $2$ | $14$ | $( 1, 4)( 2, 3)( 5,11)( 6,12)( 7, 8)( 9,10)(13,14)(15,18)(16,17)(19,26)(20,25)(21,22)(23,24)(27,28)$ |
2K | $2^{10},1^{8}$ | $42$ | $2$ | $10$ | $( 1,13)( 2,14)( 5,19)( 6,20)( 7,25)( 8,26)(11,22)(12,21)(15,28)(16,27)$ |
2L | $2^{14}$ | $42$ | $2$ | $14$ | $( 1,14)( 2,13)( 3, 4)( 5,20)( 6,19)( 7,26)( 8,25)( 9,10)(11,21)(12,22)(15,27)(16,28)(17,18)(23,24)$ |
2M | $2^{14}$ | $42$ | $2$ | $14$ | $( 1,27)( 2,28)( 3,18)( 4,17)( 5, 6)( 7,11)( 8,12)( 9,23)(10,24)(13,16)(14,15)(19,20)(21,26)(22,25)$ |
2N | $2^{8},1^{12}$ | $42$ | $2$ | $8$ | $( 1,26)( 2,25)( 7,27)( 8,28)(11,15)(12,16)(13,22)(14,21)$ |
2O | $2^{12},1^{4}$ | $42$ | $2$ | $12$ | $( 1,15)( 2,16)( 3,23)( 4,24)( 7,25)( 8,26)( 9,18)(10,17)(11,22)(12,21)(13,28)(14,27)$ |
3A | $3^{8},1^{4}$ | $224$ | $3$ | $16$ | $( 1,23,17)( 2,24,18)( 3,15,10)( 4,16, 9)( 5, 7,25)( 6, 8,26)(11,20,22)(12,19,21)$ |
4A | $4^{4},2^{6}$ | $84$ | $4$ | $18$ | $( 1,16)( 2,15)( 3, 5,17,19)( 4, 6,18,20)( 7,28,21,13)( 8,27,22,14)( 9,23)(10,24)(11,12)(25,26)$ |
4B | $4^{4},2^{4},1^{4}$ | $84$ | $4$ | $16$ | $( 1,28,15,13)( 2,27,16,14)( 5,19)( 6,20)( 7,25,21,12)( 8,26,22,11)( 9,24)(10,23)$ |
4C | $4^{4},2^{6}$ | $84$ | $4$ | $18$ | $( 1,19,15, 5)( 2,20,16, 6)( 3,12,17,25)( 4,11,18,26)( 7, 8)( 9,23)(10,24)(13,14)(21,22)(27,28)$ |
4D | $4^{4},2^{2},1^{8}$ | $84$ | $4$ | $14$ | $( 1,15)( 2,16)( 3,28,17,13)( 4,27,18,14)( 5, 7,19,21)( 6, 8,20,22)$ |
4E | $4^{4},2^{4},1^{4}$ | $168$ | $4$ | $16$ | $( 1,22,26,13)( 2,21,25,14)( 3,20)( 4,19)( 5,18)( 6,17)( 7,12,27,16)( 8,11,28,15)$ |
4F | $4^{6},2^{2}$ | $168$ | $4$ | $20$ | $( 1,27,15,14)( 2,28,16,13)( 3,21,23,12)( 4,22,24,11)( 5, 6)( 7,10,25,17)( 8, 9,26,18)(19,20)$ |
4G | $4^{4},2^{6}$ | $168$ | $4$ | $18$ | $( 1,22)( 2,21)( 3,17)( 4,18)( 5,25,24,27)( 6,26,23,28)( 7,16)( 8,15)( 9,14,19,12)(10,13,20,11)$ |
4H | $4^{6},2^{2}$ | $168$ | $4$ | $20$ | $( 1,21, 6,24)( 2,22, 5,23)( 3,12,17,25)( 4,11,18,26)( 7,20, 9,15)( 8,19,10,16)(13,27)(14,28)$ |
4I | $4^{4},2^{6}$ | $168$ | $4$ | $18$ | $( 1,24, 6, 7)( 2,23, 5, 8)( 3,12)( 4,11)( 9,20,21,15)(10,19,22,16)(13,14)(17,25)(18,26)(27,28)$ |
4J | $4^{4},2^{6}$ | $168$ | $4$ | $18$ | $( 1, 7,20, 9)( 2, 8,19,10)( 3,12)( 4,11)( 5,23,16,22)( 6,24,15,21)(13,27)(14,28)(17,25)(18,26)$ |
4K | $4^{6},2^{2}$ | $168$ | $4$ | $20$ | $( 1,15)( 2,16)( 3,26, 8,23)( 4,25, 7,24)( 5,27,19,14)( 6,28,20,13)( 9,18,12,21)(10,17,11,22)$ |
4L | $4^{6},1^{4}$ | $168$ | $4$ | $18$ | $( 1,23, 8,20)( 2,24, 7,19)( 5,16, 9,21)( 6,15,10,22)(11,28,26,13)(12,27,25,14)$ |
6A | $6^{4},2^{2}$ | $224$ | $6$ | $22$ | $( 1, 4,23,16,17, 9)( 2, 3,24,15,18,10)( 5,11, 7,20,25,22)( 6,12, 8,19,26,21)(13,27)(14,28)$ |
6B | $6^{2},3^{4},2^{2}$ | $224$ | $6$ | $20$ | $( 1,23, 6,15,10,20)( 2,24, 5,16, 9,19)( 3,28,11)( 4,27,12)( 7,21)( 8,22)(13,26,17)(14,25,18)$ |
6C | $6^{2},3^{4},1^{4}$ | $224$ | $6$ | $18$ | $( 1,11,23,15,26,10)( 2,12,24,16,25, 9)( 3,22,20)( 4,21,19)( 5,18, 7)( 6,17, 8)$ |
6D | $6^{4},2^{2}$ | $224$ | $6$ | $22$ | $( 1, 3, 8,15,17,22)( 2, 4, 7,16,18,21)( 5,14,25,19,27,12)( 6,13,26,20,28,11)( 9,24)(10,23)$ |
6E | $6^{4},2^{2}$ | $224$ | $6$ | $22$ | $( 1, 2)( 3, 5,10, 4, 6, 9)( 7,13,25, 8,14,26)(11,21,28,12,22,27)(15,16)(17,19,23,18,20,24)$ |
6F | $6^{4},2^{2}$ | $224$ | $6$ | $22$ | $( 1, 4,28,16,17,14)( 2, 3,27,15,18,13)( 5, 8,25, 6, 7,26)( 9,23)(10,24)(11,19,22,12,20,21)$ |
6G | $6^{4},2^{2}$ | $224$ | $6$ | $22$ | $( 1, 4, 8,16,17,21)( 2, 3, 7,15,18,22)( 5,23,27, 6,24,28)( 9,13,19,10,14,20)(11,12)(25,26)$ |
7A1 | $7^{4}$ | $192$ | $7$ | $24$ | $( 1,13,10,26,17, 6,22)( 2,14, 9,25,18, 5,21)( 3,20, 8,15,28,23,11)( 4,19, 7,16,27,24,12)$ |
7A-1 | $7^{4}$ | $192$ | $7$ | $24$ | $( 1,22, 6,17,26,10,13)( 2,21, 5,18,25, 9,14)( 3,11,23,28,15, 8,20)( 4,12,24,27,16, 7,19)$ |
14A1 | $14^{2}$ | $192$ | $14$ | $26$ | $( 1, 4,13,19,10, 7,26,16,17,27, 6,24,22,12)( 2, 3,14,20, 9, 8,25,15,18,28, 5,23,21,11)$ |
14A-1 | $14^{2}$ | $192$ | $14$ | $26$ | $( 1,12,22,24, 6,27,17,16,26, 7,10,19,13, 4)( 2,11,21,23, 5,28,18,15,25, 8, 9,20,14, 3)$ |
14B1 | $14^{2}$ | $192$ | $14$ | $26$ | $( 1,13, 8, 6,10,11, 3,15,28,22,20,23,26,17)( 2,14, 7, 5, 9,12, 4,16,27,21,19,24,25,18)$ |
14B-1 | $14^{2}$ | $192$ | $14$ | $26$ | $( 1,17,26,23,20,22,28,15, 3,11,10, 6, 8,13)( 2,18,25,24,19,21,27,16, 4,12, 9, 5, 7,14)$ |
14C1 | $14^{2}$ | $192$ | $14$ | $26$ | $( 1, 9,22,25,13, 5,17, 2,10,21,26,14, 6,18)( 3,16,23, 7,11,27,20, 4,15,24, 8,12,28,19)$ |
14C-1 | $14^{2}$ | $192$ | $14$ | $26$ | $( 1,18, 6,14,26,21,10, 2,17, 5,13,25,22, 9)( 3,19,28,12, 8,24,15, 4,20,27,11, 7,23,16)$ |
Malle's constant $a(G)$: $1/6$
Character table
44 x 44 character table
Regular extensions
Data not computed