Show commands: Magma
Group invariants
Abstract group: | $F_7\wr C_2$ |
| |
Order: | $3528=2^{3} \cdot 3^{2} \cdot 7^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $28$ |
| |
Transitive number $t$: | $253$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,8,25,4,21,28,17,24,13,20,9,16,5,12)(2,7,26,3,22,27,18,23,14,19,10,15,6,11)$, $(1,7,21,23,9,19,5,27,13,11,25,15)(2,8,22,24,10,20,6,28,14,12,26,16)(3,17)(4,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $S_3$, $C_6$ x 3 $8$: $D_{4}$ $12$: $D_{6}$, $C_6\times C_2$ $18$: $S_3\times C_3$ $24$: $(C_6\times C_2):C_2$, $D_4 \times C_3$ $36$: $C_6\times S_3$ $72$: 12T42 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 7: None
Degree 14: 14T45
Low degree siblings
14T45, 28T251, 28T252, 42T368, 42T369, 42T370, 42T371, 42T372Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{28}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14}$ | $14$ | $2$ | $14$ | $( 1, 2)( 3, 8)( 4, 7)( 5, 6)( 9,10)(11,28)(12,27)(13,14)(15,24)(16,23)(17,18)(19,20)(21,22)(25,26)$ |
2B | $2^{14}$ | $42$ | $2$ | $14$ | $( 1,12)( 2,11)( 3, 6)( 4, 5)( 7,18)( 8,17)( 9,24)(10,23)(13,16)(14,15)(19,26)(20,25)(21,28)(22,27)$ |
2C | $2^{12},1^{4}$ | $49$ | $2$ | $12$ | $( 1, 9)( 2,10)( 7,27)( 8,28)(11,23)(12,24)(13,25)(14,26)(15,19)(16,20)(17,21)(18,22)$ |
3A1 | $3^{4},1^{16}$ | $14$ | $3$ | $8$ | $( 1,21,17)( 2,22,18)( 5, 9,25)( 6,10,26)$ |
3A-1 | $3^{4},1^{16}$ | $14$ | $3$ | $8$ | $( 1,17,21)( 2,18,22)( 5,25, 9)( 6,26,10)$ |
3B1 | $3^{8},1^{4}$ | $49$ | $3$ | $16$ | $( 1,21,17)( 2,22,18)( 3,11,15)( 4,12,16)( 5, 9,25)( 6,10,26)( 7,27,23)( 8,28,24)$ |
3B-1 | $3^{8},1^{4}$ | $49$ | $3$ | $16$ | $( 1,17,21)( 2,18,22)( 3,15,11)( 4,16,12)( 5,25, 9)( 6,26,10)( 7,23,27)( 8,24,28)$ |
3C | $3^{8},1^{4}$ | $98$ | $3$ | $16$ | $( 1, 5,21)( 2, 6,22)( 7,11,19)( 8,12,20)(13,25,17)(14,26,18)(15,27,23)(16,28,24)$ |
4A | $4^{6},2^{2}$ | $294$ | $4$ | $20$ | $( 1,15, 9,19)( 2,16,10,20)( 3, 5)( 4, 6)( 7,25,27,13)( 8,26,28,14)(11,17,23,21)(12,18,24,22)$ |
6A1 | $6^{2},2^{8}$ | $14$ | $6$ | $18$ | $( 1, 2)( 3,24,27,12,19,16)( 4,23,28,11,20,15)( 5, 6)( 7, 8)( 9,10)(13,14)(17,18)(21,22)(25,26)$ |
6A-1 | $6^{2},2^{8}$ | $14$ | $6$ | $18$ | $( 1, 2)( 3,16,19,12,27,24)( 4,15,20,11,28,23)( 5, 6)( 7, 8)( 9,10)(13,14)(17,18)(21,22)(25,26)$ |
6B1 | $6^{4},1^{4}$ | $49$ | $6$ | $20$ | $( 1,13,17, 9,25,21)( 2,14,18,10,26,22)( 7,23,19,27,11,15)( 8,24,20,28,12,16)$ |
6B-1 | $6^{4},1^{4}$ | $49$ | $6$ | $20$ | $( 1,21,25, 9,17,13)( 2,22,26,10,18,14)( 7,15,11,27,19,23)( 8,16,12,28,20,24)$ |
6C | $6^{4},1^{4}$ | $98$ | $6$ | $20$ | $( 1,21,25, 9,17,13)( 2,22,26,10,18,14)( 7,23,19,27,11,15)( 8,24,20,28,12,16)$ |
6D1 | $6^{4},2^{2}$ | $98$ | $6$ | $22$ | $( 1,18,21, 2,17,22)( 3,24,11, 8,15,28)( 4,23,12, 7,16,27)( 5,26, 9, 6,25,10)(13,14)(19,20)$ |
6D-1 | $6^{4},2^{2}$ | $98$ | $6$ | $22$ | $( 1,22,17, 2,21,18)( 3,28,15, 8,11,24)( 4,27,16, 7,12,23)( 5,10,25, 6, 9,26)(13,14)(19,20)$ |
6E1 | $6^{4},2^{2}$ | $98$ | $6$ | $22$ | $( 1,22, 5, 2,21, 6)( 3, 4)( 7,16,11,28,19,24)( 8,15,12,27,20,23)( 9,10)(13,18,25,14,17,26)$ |
6E-1 | $6^{4},2^{2}$ | $98$ | $6$ | $22$ | $( 1, 6,21, 2, 5,22)( 3, 4)( 7,24,19,28,11,16)( 8,23,20,27,12,15)( 9,10)(13,26,17,14,25,18)$ |
6F1 | $6^{2},2^{8}$ | $98$ | $6$ | $18$ | $( 1,18,21, 2,17,22)( 3,12)( 4,11)( 5,26, 9, 6,25,10)( 7, 8)(13,14)(15,28)(16,27)(19,24)(20,23)$ |
6F-1 | $6^{2},2^{8}$ | $98$ | $6$ | $18$ | $( 1,22,17, 2,21,18)( 3,12)( 4,11)( 5,10,25, 6, 9,26)( 7, 8)(13,14)(15,28)(16,27)(19,24)(20,23)$ |
6G1 | $6^{2},2^{6},1^{4}$ | $98$ | $6$ | $16$ | $( 1, 9)( 2,10)( 3, 7,27,15,11,19)( 4, 8,28,16,12,20)(13,25)(14,26)(17,21)(18,22)$ |
6G-1 | $6^{2},2^{6},1^{4}$ | $98$ | $6$ | $16$ | $( 1, 9)( 2,10)( 3,19,11,15,27, 7)( 4,20,12,16,28, 8)(13,25)(14,26)(17,21)(18,22)$ |
6H1 | $6^{4},2^{2}$ | $294$ | $6$ | $22$ | $( 1,28,17,12,21, 8)( 2,27,18,11,22, 7)( 3,10,19, 6,23,26)( 4, 9,20, 5,24,25)(13,16)(14,15)$ |
6H-1 | $6^{4},2^{2}$ | $294$ | $6$ | $22$ | $( 1, 8,21,12,17,28)( 2, 7,22,11,18,27)( 3,26,23, 6,19,10)( 4,25,24, 5,20, 9)(13,16)(14,15)$ |
7A | $7^{2},1^{14}$ | $12$ | $7$ | $12$ | $( 1, 5, 9,13,17,21,25)( 2, 6,10,14,18,22,26)$ |
7B | $7^{4}$ | $36$ | $7$ | $24$ | $( 1,17, 5,21, 9,25,13)( 2,18, 6,22,10,26,14)( 3,23,15, 7,27,19,11)( 4,24,16, 8,28,20,12)$ |
12A1 | $12^{2},2^{2}$ | $294$ | $12$ | $24$ | $( 1,11,13,15,17, 7, 9,23,25,19,21,27)( 2,12,14,16,18, 8,10,24,26,20,22,28)( 3, 5)( 4, 6)$ |
12A-1 | $12^{2},2^{2}$ | $294$ | $12$ | $24$ | $( 1,27,21,19,25,23, 9, 7,17,15,13,11)( 2,28,22,20,26,24,10, 8,18,16,14,12)( 3, 5)( 4, 6)$ |
14A | $14,2^{7}$ | $84$ | $14$ | $20$ | $( 1,18, 5,22, 9,26,13, 2,17, 6,21,10,25,14)( 3,12)( 4,11)( 7, 8)(15,28)(16,27)(19,24)(20,23)$ |
14B | $14^{2}$ | $252$ | $14$ | $26$ | $( 1, 8,17,28, 5,20,21,12, 9, 4,25,24,13,16)( 2, 7,18,27, 6,19,22,11,10, 3,26,23,14,15)$ |
21A1 | $7^{2},3^{4},1^{2}$ | $84$ | $21$ | $20$ | $( 1,21,13, 5,25,17, 9)( 2,22,14, 6,26,18,10)( 3,27,19)( 4,28,20)(11,15,23)(12,16,24)$ |
21A-1 | $7^{2},3^{4},1^{2}$ | $84$ | $21$ | $20$ | $( 1, 9,17,25, 5,13,21)( 2,10,18,26, 6,14,22)( 3,19,27)( 4,20,28)(11,23,15)(12,24,16)$ |
42A1 | $14,6^{2},2$ | $84$ | $42$ | $24$ | $( 1,26,21,18,13,10, 5, 2,25,22,17,14, 9, 6)( 3,24,27,12,19,16)( 4,23,28,11,20,15)( 7, 8)$ |
42A-1 | $14,6^{2},2$ | $84$ | $42$ | $24$ | $( 1, 6, 9,14,17,22,25, 2, 5,10,13,18,21,26)( 3,16,19,12,27,24)( 4,15,20,11,28,23)( 7, 8)$ |
Malle's constant $a(G)$: $1/8$
Character table
35 x 35 character table
Regular extensions
Data not computed