Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_7^4:(C_2\times C_3^3:S_4)$ | 
     | |
| Order: | $3111696=2^{4} \cdot 3^{4} \cdot 7^{4}$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | yes | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $28$ | 
     | |
| Transitive number $t$: | $1371$ | 
     | |
| Parity: | $-1$ | 
     | |
| Primitive: | no | 
     | |
| $\card{\Aut(F/K)}$: | $1$ | 
     | |
| Generators: | $(2,7)(3,6)(4,5)(8,27,13,28,11,22,9,23,14,24,12,25,10,26)(15,17)(18,21)(19,20)$, $(1,18,28,10,3,16,23,11,5,21,25,12,7,19,27,13,2,17,22,14,4,15,24,8,6,20,26,9)$ | 
     | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ $48$: $S_4\times C_2$ $648$: $(((C_3 \times (C_3^2 : C_2)) : C_2) : C_3) : C_2$ $1296$: 18T305 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: $S_4$
Degree 7: None
Degree 14: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
100 x 100 character table
Regular extensions
Data not computed