Show commands: Magma
Group invariants
| Abstract group: | $C_2^4:F_8$ |
| |
| Order: | $896=2^{7} \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $28$ |
| |
| Transitive number $t$: | $101$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,22,8,27,13,20,10)(2,21,7,28,14,19,9)(3,23,5,26,16,18,11)(4,24,6,25,15,17,12)$, $(1,25,11,5,20,23,14,2,26,12,6,19,24,13)(3,27,10,7,18,21,15)(4,28,9,8,17,22,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $7$: $C_7$ $14$: $C_{14}$ $56$: $C_2^3:C_7$ $112$: 14T9 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 7: $C_7$
Degree 14: 14T6
Low degree siblings
16T1075 x 4, 28T97 x 4, 28T101 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{28}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{8},1^{12}$ | $7$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(13,14)(15,16)(25,26)(27,28)$ |
| 2B | $2^{7},1^{14}$ | $8$ | $2$ | $7$ | $( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)$ |
| 2C | $2^{12},1^{4}$ | $14$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,22)(23,24)$ |
| 2D | $2^{12},1^{4}$ | $14$ | $2$ | $12$ | $( 5, 8)( 6, 7)( 9,12)(10,11)(13,15)(14,16)(17,20)(18,19)(21,22)(23,24)(25,26)(27,28)$ |
| 2E | $2^{12},1^{4}$ | $14$ | $2$ | $12$ | $( 1, 4)( 2, 3)( 9,11)(10,12)(13,14)(15,16)(17,19)(18,20)(21,22)(23,24)(25,28)(26,27)$ |
| 2F | $2^{8},1^{12}$ | $14$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)(17,20)(18,19)(21,23)(22,24)$ |
| 4A | $4^{4},2^{3},1^{6}$ | $56$ | $4$ | $15$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,10)(13,16,14,15)(17,18)(23,24)(25,27,26,28)$ |
| 7A1 | $7^{4}$ | $64$ | $7$ | $24$ | $( 1,25,10, 5,17,21,14)( 2,26, 9, 6,18,22,13)( 3,28,11, 8,19,24,15)( 4,27,12, 7,20,23,16)$ |
| 7A-1 | $7^{4}$ | $64$ | $7$ | $24$ | $( 1,14,21,17, 5,10,25)( 2,13,22,18, 6, 9,26)( 3,15,24,19, 8,11,28)( 4,16,23,20, 7,12,27)$ |
| 7A2 | $7^{4}$ | $64$ | $7$ | $24$ | $( 1,10,17,14,25, 5,21)( 2, 9,18,13,26, 6,22)( 3,11,19,15,28, 8,24)( 4,12,20,16,27, 7,23)$ |
| 7A-2 | $7^{4}$ | $64$ | $7$ | $24$ | $( 1,21, 5,25,14,17,10)( 2,22, 6,26,13,18, 9)( 3,24, 8,28,15,19,11)( 4,23, 7,27,16,20,12)$ |
| 7A3 | $7^{4}$ | $64$ | $7$ | $24$ | $( 1, 5,14,10,21,25,17)( 2, 6,13, 9,22,26,18)( 3, 8,15,11,24,28,19)( 4, 7,16,12,23,27,20)$ |
| 7A-3 | $7^{4}$ | $64$ | $7$ | $24$ | $( 1,17,25,21,10,14, 5)( 2,18,26,22, 9,13, 6)( 3,19,28,24,11,15, 8)( 4,20,27,23,12,16, 7)$ |
| 14A1 | $14,7^{2}$ | $64$ | $14$ | $25$ | $( 1,17,25,21,10,14, 5)( 2,18,26,22, 9,13, 6)( 3,20,28,23,11,16, 8, 4,19,27,24,12,15, 7)$ |
| 14A-1 | $14,7^{2}$ | $64$ | $14$ | $25$ | $( 1, 5,14,10,21,25,17)( 2, 6,13, 9,22,26,18)( 3, 7,15,12,24,27,19, 4, 8,16,11,23,28,20)$ |
| 14A3 | $14,7^{2}$ | $64$ | $14$ | $25$ | $( 1,21, 5,25,14,17,10)( 2,22, 6,26,13,18, 9)( 3,23, 8,27,15,20,11, 4,24, 7,28,16,19,12)$ |
| 14A-3 | $14,7^{2}$ | $64$ | $14$ | $25$ | $( 1,10,17,14,25, 5,21)( 2, 9,18,13,26, 6,22)( 3,12,19,16,28, 7,24, 4,11,20,15,27, 8,23)$ |
| 14A5 | $14,7^{2}$ | $64$ | $14$ | $25$ | $( 1,14,21,17, 5,10,25)( 2,13,22,18, 6, 9,26)( 3,16,24,20, 8,12,28, 4,15,23,19, 7,11,27)$ |
| 14A-5 | $14,7^{2}$ | $64$ | $14$ | $25$ | $( 1,25,10, 5,17,21,14)( 2,26, 9, 6,18,22,13)( 3,27,11, 7,19,23,15, 4,28,12, 8,20,24,16)$ |
Malle's constant $a(G)$: $1/7$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 7A1 | 7A-1 | 7A2 | 7A-2 | 7A3 | 7A-3 | 14A1 | 14A-1 | 14A3 | 14A-3 | 14A5 | 14A-5 | ||
| Size | 1 | 7 | 8 | 14 | 14 | 14 | 14 | 56 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | 64 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 7A2 | 7A-2 | 7A-3 | 7A3 | 7A-1 | 7A1 | 7A1 | 7A-1 | 7A3 | 7A-3 | 7A-2 | 7A2 | |
| 7 P | 1A | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 7A3 | 7A-3 | 7A-1 | 7A1 | 7A2 | 7A-2 | 14A3 | 14A-3 | 14A-5 | 14A5 | 14A1 | 14A-1 | |
| Type | |||||||||||||||||||||
| 896.5502.1a | R | ||||||||||||||||||||
| 896.5502.1b | R | ||||||||||||||||||||
| 896.5502.1c1 | C | ||||||||||||||||||||
| 896.5502.1c2 | C | ||||||||||||||||||||
| 896.5502.1c3 | C | ||||||||||||||||||||
| 896.5502.1c4 | C | ||||||||||||||||||||
| 896.5502.1c5 | C | ||||||||||||||||||||
| 896.5502.1c6 | C | ||||||||||||||||||||
| 896.5502.1d1 | C | ||||||||||||||||||||
| 896.5502.1d2 | C | ||||||||||||||||||||
| 896.5502.1d3 | C | ||||||||||||||||||||
| 896.5502.1d4 | C | ||||||||||||||||||||
| 896.5502.1d5 | C | ||||||||||||||||||||
| 896.5502.1d6 | C | ||||||||||||||||||||
| 896.5502.7a | R | ||||||||||||||||||||
| 896.5502.7b | R | ||||||||||||||||||||
| 896.5502.14a | R | ||||||||||||||||||||
| 896.5502.14b | R | ||||||||||||||||||||
| 896.5502.14c | R | ||||||||||||||||||||
| 896.5502.14d | R |
Regular extensions
Data not computed