Show commands: Magma
Group invariants
| Abstract group: | $S_3\times D_7$ |
| |
| Order: | $84=2^{2} \cdot 3 \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $21$ |
| |
| Transitive number $t$: | $8$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,2,3)(4,20,6,19,5,21)(7,17,9,16,8,18)(10,14,12,13,11,15)$, $(1,17,10,5,19,14,7,2,16,11,4,20,13,8)(3,18,12,6,21,15,9)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $14$: $D_{7}$ $28$: $D_{14}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 7: $D_{7}$
Low degree siblings
42T13, 42T14, 42T15Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{7},1^{7}$ | $3$ | $2$ | $7$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)$ |
| 2B | $2^{9},1^{3}$ | $7$ | $2$ | $9$ | $( 1,16)( 2,17)( 3,18)( 4,13)( 5,14)( 6,15)( 7,10)( 8,11)( 9,12)$ |
| 2C | $2^{10},1$ | $21$ | $2$ | $10$ | $( 1,11)( 2,10)( 3,12)( 4, 8)( 5, 7)( 6, 9)(13,20)(14,19)(15,21)(16,17)$ |
| 3A | $3^{7}$ | $2$ | $3$ | $14$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)$ |
| 6A | $6^{3},3$ | $14$ | $6$ | $17$ | $( 1,17, 3,16, 2,18)( 4,14, 6,13, 5,15)( 7,11, 9,10, 8,12)(19,20,21)$ |
| 7A1 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1,13, 4,16, 7,19,10)( 2,14, 5,17, 8,20,11)( 3,15, 6,18, 9,21,12)$ |
| 7A2 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1, 4, 7,10,13,16,19)( 2, 5, 8,11,14,17,20)( 3, 6, 9,12,15,18,21)$ |
| 7A3 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1,16,10, 4,19,13, 7)( 2,17,11, 5,20,14, 8)( 3,18,12, 6,21,15, 9)$ |
| 14A1 | $14,7$ | $6$ | $14$ | $19$ | $( 1, 7,13,19, 4,10,16)( 2, 9,14,21, 5,12,17, 3, 8,15,20, 6,11,18)$ |
| 14A3 | $14,7$ | $6$ | $14$ | $19$ | $( 1,21,16,15,10, 9, 4, 3,19,18,13,12, 7, 6)( 2,20,17,14,11, 8, 5)$ |
| 14A5 | $14,7$ | $6$ | $14$ | $19$ | $( 1,11,19, 8,16, 5,13, 2,10,20, 7,17, 4,14)( 3,12,21, 9,18, 6,15)$ |
| 21A1 | $21$ | $4$ | $21$ | $20$ | $( 1,11,21, 7,17, 6,13, 2,12,19, 8,18, 4,14, 3,10,20, 9,16, 5,15)$ |
| 21A2 | $21$ | $4$ | $21$ | $20$ | $( 1,21,17,13,12, 8, 4, 3,20,16,15,11, 7, 6, 2,19,18,14,10, 9, 5)$ |
| 21A4 | $21$ | $4$ | $21$ | $20$ | $( 1,17,12, 4,20,15, 7, 2,18,10, 5,21,13, 8, 3,16,11, 6,19,14, 9)$ |
Malle's constant $a(G)$: $1/7$
Character table
| 1A | 2A | 2B | 2C | 3A | 6A | 7A1 | 7A2 | 7A3 | 14A1 | 14A3 | 14A5 | 21A1 | 21A2 | 21A4 | ||
| Size | 1 | 3 | 7 | 21 | 2 | 14 | 2 | 2 | 2 | 6 | 6 | 6 | 4 | 4 | 4 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3A | 7A2 | 7A3 | 7A1 | 7A1 | 7A3 | 7A2 | 21A2 | 21A4 | 21A1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 2B | 7A3 | 7A1 | 7A2 | 14A3 | 14A5 | 14A1 | 7A3 | 7A1 | 7A2 | |
| 7 P | 1A | 2A | 2B | 2C | 3A | 6A | 1A | 1A | 1A | 2A | 2A | 2A | 3A | 3A | 3A | |
| Type | ||||||||||||||||
| 84.8.1a | R | |||||||||||||||
| 84.8.1b | R | |||||||||||||||
| 84.8.1c | R | |||||||||||||||
| 84.8.1d | R | |||||||||||||||
| 84.8.2a | R | |||||||||||||||
| 84.8.2b | R | |||||||||||||||
| 84.8.2c1 | R | |||||||||||||||
| 84.8.2c2 | R | |||||||||||||||
| 84.8.2c3 | R | |||||||||||||||
| 84.8.2d1 | R | |||||||||||||||
| 84.8.2d2 | R | |||||||||||||||
| 84.8.2d3 | R | |||||||||||||||
| 84.8.4a1 | R | |||||||||||||||
| 84.8.4a2 | R | |||||||||||||||
| 84.8.4a3 | R |
Regular extensions
Data not computed