Show commands: Magma
Group invariants
Abstract group: | $C_7:C_{21}$ |
| |
Order: | $147=3 \cdot 7^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $21$ |
| |
Transitive number $t$: | $13$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $7$ |
| |
Generators: | $(1,4,7,3,6,2,5)(8,9,10,11,12,13,14)(15,19,16,20,17,21,18)$, $(1,11,16)(2,8,21)(3,12,19)(4,9,17)(5,13,15)(6,10,20)(7,14,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $7$: $C_7$ $21$: $C_7:C_3$, $C_{21}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T13Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
3A1 | $3^{7}$ | $7$ | $3$ | $14$ | $( 1,16,11)( 2,21, 8)( 3,19,12)( 4,17, 9)( 5,15,13)( 6,20,10)( 7,18,14)$ |
3A-1 | $3^{7}$ | $7$ | $3$ | $14$ | $( 1,11,16)( 2, 8,21)( 3,12,19)( 4, 9,17)( 5,13,15)( 6,10,20)( 7,14,18)$ |
7A1 | $7^{3}$ | $1$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,12, 9,13,10,14,11)(15,20,18,16,21,19,17)$ |
7A-1 | $7^{3}$ | $1$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,11,14,10,13, 9,12)(15,17,19,21,16,18,20)$ |
7A2 | $7^{3}$ | $1$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8, 9,10,11,12,13,14)(15,18,21,17,20,16,19)$ |
7A-2 | $7^{3}$ | $1$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,14,13,12,11,10, 9)(15,19,16,20,17,21,18)$ |
7A3 | $7^{3}$ | $1$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,13,11, 9,14,12,10)(15,16,17,18,19,20,21)$ |
7A-3 | $7^{3}$ | $1$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,10,12,14, 9,11,13)(15,21,20,19,18,17,16)$ |
7B1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,12, 9,13,10,14,11)(15,21,20,19,18,17,16)$ |
7B-1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,19,16,20,17,21,18)$ |
7C1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8, 9,10,11,12,13,14)(15,19,16,20,17,21,18)$ |
7C-1 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 6, 4, 2, 7, 5, 3)( 8, 9,10,11,12,13,14)(15,21,20,19,18,17,16)$ |
7C2 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,13,11, 9,14,12,10)(15,17,19,21,16,18,20)$ |
7C-2 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,12, 9,13,10,14,11)(15,16,17,18,19,20,21)$ |
7C3 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,11,14,10,13, 9,12)(15,20,18,16,21,19,17)$ |
7C-3 | $7^{3}$ | $3$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,14,13,12,11,10, 9)(15,20,18,16,21,19,17)$ |
7D1 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 8,10,12,14, 9,11,13)(15,17,19,21,16,18,20)$ |
7D-1 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7)(15,16,17,18,19,20,21)$ |
7D2 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,14,13,12,11,10, 9)$ |
7D-2 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 8,11,14,10,13, 9,12)(15,18,21,17,20,16,19)$ |
7D3 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 6, 4, 2, 7, 5, 3)( 8,10,12,14, 9,11,13)$ |
7D-3 | $7^{2},1^{7}$ | $3$ | $7$ | $12$ | $( 1, 4, 7, 3, 6, 2, 5)(15,18,21,17,20,16,19)$ |
21A1 | $21$ | $7$ | $21$ | $20$ | $( 1,20, 9, 2,18,13, 3,16,10, 4,21,14, 5,19,11, 6,17, 8, 7,15,12)$ |
21A-1 | $21$ | $7$ | $21$ | $20$ | $( 1,12,15, 7, 8,17, 6,11,19, 5,14,21, 4,10,16, 3,13,18, 2, 9,20)$ |
21A2 | $21$ | $7$ | $21$ | $20$ | $( 1, 9,18, 3,10,21, 5,11,17, 7,12,20, 2,13,16, 4,14,19, 6, 8,15)$ |
21A-2 | $21$ | $7$ | $21$ | $20$ | $( 1,15, 8, 6,19,14, 4,16,13, 2,20,12, 7,17,11, 5,21,10, 3,18, 9)$ |
21A4 | $21$ | $7$ | $21$ | $20$ | $( 1,18,10, 5,17,12, 2,16,14, 6,15, 9, 3,21,11, 7,20,13, 4,19, 8)$ |
21A-4 | $21$ | $7$ | $21$ | $20$ | $( 1, 8,19, 4,13,20, 7,11,21, 3, 9,15, 6,14,16, 2,12,17, 5,10,18)$ |
21A5 | $21$ | $7$ | $21$ | $20$ | $( 1,13,21, 6,12,18, 4,11,15, 2,10,19, 7, 9,16, 5, 8,20, 3,14,17)$ |
21A-5 | $21$ | $7$ | $21$ | $20$ | $( 1,17,14, 3,20, 8, 5,16, 9, 7,19,10, 2,15,11, 4,18,12, 6,21,13)$ |
21A8 | $21$ | $7$ | $21$ | $20$ | $( 1,10,17, 2,14,15, 3,11,20, 4, 8,18, 5,12,16, 6, 9,21, 7,13,19)$ |
21A-8 | $21$ | $7$ | $21$ | $20$ | $( 1,19,13, 7,21, 9, 6,16,12, 5,18, 8, 4,20,11, 3,15,14, 2,17,10)$ |
21A10 | $21$ | $7$ | $21$ | $20$ | $( 1,21,12, 4,15,10, 7,16, 8, 3,17,13, 6,18,11, 2,19, 9, 5,20,14)$ |
21A-10 | $21$ | $7$ | $21$ | $20$ | $( 1,14,20, 5, 9,19, 2,11,18, 6,13,17, 3, 8,16, 7,10,15, 4,12,21)$ |
Malle's constant $a(G)$: $1/12$
Character table
35 x 35 character table
Regular extensions
Data not computed