Show commands: Magma
Group invariants
| Abstract group: | $\SL(2,8):C_6$ |
| |
| Order: | $3024=2^{4} \cdot 3^{3} \cdot 7$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $18$ |
| |
| Transitive number $t$: | $427$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,15,7,3,18,10)(2,16,8,4,17,9)(5,13)(6,14)(11,12)$, $(1,16)(2,15)(3,10,8,14,12,5)(4,9,7,13,11,6)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $1512$: $\mathrm{P}\Gamma\mathrm{L}(2,8)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 6: None
Degree 9: $\mathrm{P}\Gamma\mathrm{L}(2,8)$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{18}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{9}$ | $1$ | $2$ | $9$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)$ |
| 2B | $2^{8},1^{2}$ | $63$ | $2$ | $8$ | $( 1, 9)( 2,10)( 5, 8)( 6, 7)(11,18)(12,17)(13,16)(14,15)$ |
| 2C | $2^{9}$ | $63$ | $2$ | $9$ | $( 1, 3)( 2, 4)( 5,11)( 6,12)( 7, 8)( 9,15)(10,16)(13,17)(14,18)$ |
| 3A | $3^{6}$ | $56$ | $3$ | $12$ | $( 1, 9,11)( 2,10,12)( 3,15,17)( 4,16,18)( 5, 8,14)( 6, 7,13)$ |
| 3B1 | $3^{4},1^{6}$ | $84$ | $3$ | $8$ | $( 1,13, 6)( 2,14, 5)( 7, 9,16)( 8,10,15)$ |
| 3B-1 | $3^{4},1^{6}$ | $84$ | $3$ | $8$ | $( 1, 6,13)( 2, 5,14)( 7,16, 9)( 8,15,10)$ |
| 6A | $6^{3}$ | $56$ | $6$ | $15$ | $( 1,12, 9, 2,11,10)( 3,18,15, 4,17,16)( 5,13, 8, 6,14, 7)$ |
| 6B1 | $6^{2},2^{3}$ | $84$ | $6$ | $13$ | $( 1,17,11, 2,18,12)( 3, 6,10, 4, 5, 9)( 7, 8)(13,14)(15,16)$ |
| 6B-1 | $6^{2},2^{3}$ | $84$ | $6$ | $13$ | $( 1,12,18, 2,11,17)( 3, 9, 5, 4,10, 6)( 7, 8)(13,14)(15,16)$ |
| 6C1 | $6^{2},2^{2},1^{2}$ | $252$ | $6$ | $12$ | $( 1, 7,13, 9, 6,16)( 2, 8,14,10, 5,15)(11,18)(12,17)$ |
| 6C-1 | $6^{2},2^{2},1^{2}$ | $252$ | $6$ | $12$ | $( 1,16, 6, 9,13, 7)( 2,15, 5,10,14, 8)(11,18)(12,17)$ |
| 6D1 | $6^{2},2^{3}$ | $252$ | $6$ | $13$ | $( 1,10, 6, 3,16,12)( 2, 9, 5, 4,15,11)( 7, 8)(13,17)(14,18)$ |
| 6D-1 | $6^{2},2^{3}$ | $252$ | $6$ | $13$ | $( 1,12,16, 3, 6,10)( 2,11,15, 4, 5, 9)( 7, 8)(13,17)(14,18)$ |
| 7A | $7^{2},1^{4}$ | $216$ | $7$ | $12$ | $( 1,13,11, 4, 6, 9,16)( 2,14,12, 3, 5,10,15)$ |
| 9A | $9^{2}$ | $168$ | $9$ | $16$ | $( 1,16, 6, 9,18, 7,11, 4,13)( 2,15, 5,10,17, 8,12, 3,14)$ |
| 9B1 | $9^{2}$ | $168$ | $9$ | $16$ | $( 1, 9, 4, 6,13,16,11,18, 7)( 2,10, 3, 5,14,15,12,17, 8)$ |
| 9B-1 | $9^{2}$ | $168$ | $9$ | $16$ | $( 1, 7,18,11,16,13, 6, 4, 9)( 2, 8,17,12,15,14, 5, 3,10)$ |
| 14A | $14,2^{2}$ | $216$ | $14$ | $15$ | $( 1, 5,13,10,11,15, 4, 2, 6,14, 9,12,16, 3)( 7, 8)(17,18)$ |
| 18A | $18$ | $168$ | $18$ | $17$ | $( 1, 8,16,12, 6, 3, 9,14,18, 2, 7,15,11, 5, 4,10,13,17)$ |
| 18B1 | $18$ | $168$ | $18$ | $17$ | $( 1,15, 9,12, 4,17, 6, 8,13, 2,16,10,11, 3,18, 5, 7,14)$ |
| 18B-1 | $18$ | $168$ | $18$ | $17$ | $( 1,14, 7, 5,18, 3,11,10,16, 2,13, 8, 6,17, 4,12, 9,15)$ |
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 2B | 2C | 3A | 3B1 | 3B-1 | 6A | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 7A | 9A | 9B1 | 9B-1 | 14A | 18A | 18B1 | 18B-1 | ||
| Size | 1 | 1 | 63 | 63 | 56 | 84 | 84 | 56 | 84 | 84 | 252 | 252 | 252 | 252 | 216 | 168 | 168 | 168 | 216 | 168 | 168 | 168 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 3B-1 | 3B1 | 3A | 3B-1 | 3B1 | 3B1 | 3B-1 | 3B-1 | 3B1 | 7A | 9A | 9B-1 | 9B1 | 7A | 9A | 9B1 | 9B-1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 1A | 1A | 2A | 2A | 2A | 2B | 2B | 2C | 2C | 7A | 3A | 3A | 3A | 14A | 6A | 6A | 6A | |
| 7 P | 1A | 2A | 2B | 2C | 3A | 3B1 | 3B-1 | 6A | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 1A | 9A | 9B1 | 9B-1 | 2A | 18A | 18B1 | 18B-1 | |
| Type | |||||||||||||||||||||||
| 3024.r.1a | R | ||||||||||||||||||||||
| 3024.r.1b | R | ||||||||||||||||||||||
| 3024.r.1c1 | C | ||||||||||||||||||||||
| 3024.r.1c2 | C | ||||||||||||||||||||||
| 3024.r.1d1 | C | ||||||||||||||||||||||
| 3024.r.1d2 | C | ||||||||||||||||||||||
| 3024.r.7a | R | ||||||||||||||||||||||
| 3024.r.7b | R | ||||||||||||||||||||||
| 3024.r.7c1 | C | ||||||||||||||||||||||
| 3024.r.7c2 | C | ||||||||||||||||||||||
| 3024.r.7d1 | C | ||||||||||||||||||||||
| 3024.r.7d2 | C | ||||||||||||||||||||||
| 3024.r.8a | R | ||||||||||||||||||||||
| 3024.r.8b | R | ||||||||||||||||||||||
| 3024.r.8c1 | C | ||||||||||||||||||||||
| 3024.r.8c2 | C | ||||||||||||||||||||||
| 3024.r.8d1 | C | ||||||||||||||||||||||
| 3024.r.8d2 | C | ||||||||||||||||||||||
| 3024.r.21a | R | ||||||||||||||||||||||
| 3024.r.21b | R | ||||||||||||||||||||||
| 3024.r.27a | R | ||||||||||||||||||||||
| 3024.r.27b | R |
Regular extensions
Data not computed