magma: G := PermutationGroup< 11 | (1,2)(4,5,6,7,9,8)(10,11), (1,3,2,4,6,8)(7,9) >;
gap: G := Group( (1,2)(4,5,6,7,9,8)(10,11), (1,3,2,4,6,8)(7,9) );
sage: G = PermutationGroup(['(1,2)(4,5,6,7,9,8)(10,11)', '(1,3,2,4,6,8)(7,9)'])
Group information
Description: $\SL(2,8):C_6$
Order: \(3024\)\(\medspace = 2^{4} \cdot 3^{3} \cdot 7 \)
magma: Order(G);
gap: Order(G);
sage: G.order()
sage_gap: G.Order()
Exponent: \(126\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \)
magma: Exponent(G);
gap: Exponent(G);
sage: G.exponent()
sage_gap: G.Exponent()
Automorphism group :${}^2G(2,3)$ , of order \(1512\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 7 \)
gap: AutomorphismGroup(G);
magma: AutomorphismGroup(G);
sage_gap: G.AutomorphismGroup()
Composition factors :$C_2$ , $C_3$ , $\SL(2,8)$
magma: CompositionFactors(G);
gap: CompositionSeries(G);
sage: G.composition_series()
sage_gap: G.CompositionSeries()
Derived length: $1$
magma: DerivedLength(G);
gap: DerivedLength(G);
sage_gap: G.DerivedLength()
This group is nonabelian and nonsolvable .
magma: IsAbelian(G);
gap: IsAbelian(G);
sage: G.is_abelian()
sage_gap: G.IsAbelian()
magma: IsCyclic(G);
gap: IsCyclic(G);
sage: G.is_cyclic()
sage_gap: G.IsCyclic()
magma: IsNilpotent(G);
gap: IsNilpotentGroup(G);
sage: G.is_nilpotent()
sage_gap: G.IsNilpotentGroup()
magma: IsSolvable(G);
gap: IsSolvableGroup(G);
sage: G.is_solvable()
sage_gap: G.IsSolvableGroup()
gap: IsSupersolvableGroup(G);
sage: G.is_supersolvable()
sage_gap: G.IsSupersolvableGroup()
magma: IsSimple(G);
gap: IsSimpleGroup(G);
sage_gap: G.IsSimpleGroup()
Group statistics
magma: // Magma code to output the first two rows of the group statistics table
element_orders := [Order(g) : g in G];
orders := Set(element_orders);
printf "Orders: %o\n", orders;
printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G);
cc_orders := [cc[1] : cc in ConjugacyClasses(G)];
printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
gap: # Gap code to output the first two rows of the group statistics table
element_orders := List(Elements(G), g -> Order(g));
orders := Set(element_orders);
Print("Orders: ", orders, "\n");
element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n)));
Print("Elements: ", element_counts, " ", Size(G), "\n");
cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc)));
cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n)));
Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
sage: # Sage code to output the first two rows of the group statistics table
element_orders = [g.order() for g in G]
orders = sorted(list(set(element_orders)))
print("Orders:", orders)
print("Elements:", [element_orders.count(n) for n in orders], G.order())
cc_orders = [cc[0].order() for cc in G.conjugacy_classes()]
print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
magma: // Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i
CharacterDegrees(G);
gap: # Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i
CharacterDegrees(G);
sage: # Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i
character_degrees = [c[0] for c in G.character_table()]
[[n, character_degrees.count(n)] for n in set(character_degrees)]
sage_gap: G.CharacterDegrees()
Minimal presentations
Constructions
Permutation group :Degree $11$
$\langle(1,2)(4,5,6,7,9,8)(10,11), (1,3,2,4,6,8)(7,9)\rangle$
magma: G := PermutationGroup< 11 | (1,2)(4,5,6,7,9,8)(10,11), (1,3,2,4,6,8)(7,9) >;
gap: G := Group( (1,2)(4,5,6,7,9,8)(10,11), (1,3,2,4,6,8)(7,9) );
sage: G = PermutationGroup(['(1,2)(4,5,6,7,9,8)(10,11)', '(1,3,2,4,6,8)(7,9)'])
Transitive group :
18T427
more information
Direct product :
$C_2$ $\, \times\, $ ${}^2G(2,3)$
Semidirect product :
$\SL(2,8)$ $\,\rtimes\,$ $C_6$
$(C_2\times \SL(2,8))$ $\,\rtimes\,$ $C_3$
more information
Trans. wreath product :
not isomorphic to a non-trivial transitive wreath product
Aut. group :
$\Aut(C_3\times \SL(2,8))$
$\Aut(C_4\times \SL(2,8))$
$\Aut(C_6\times \SL(2,8))$
$\Aut(\SL(2,8):C_{12})$
Elements of the group are displayed as permutations of degree 11.
Homology
Subgroups
magma: Subgroups(G);
gap: AllSubgroups(G);
sage: G.subgroups()
sage_gap: G.AllSubgroups()
There are 3234 subgroups in 61 conjugacy classes , 6 normal , and all normal subgroups are characteristic.
Characteristic subgroups are shown in this color .
Special subgroups
Hi
diagram
profile
all subgroups
normal subgroups
up to conjugacy
up to automorphism
Classes of subgroups up to conjugation
Classes of subgroups up to automorphism
Normal subgroups
Normal subgroups up to automorphism
Classes of subgroups up to conjugation
Order 3024: $\SL(2,8):C_6$
Order 1512: ${}^2G(2,3)$
Order 1008: $C_2\times \SL(2,8)$
Order 504: $\SL(2,8)$
Order 336: $F_8:C_6$
Order 168: $F_8:C_3$
Order 112: $C_2\times F_8$
Order 108: $C_{18}:C_6$
Order 84: $C_2\times F_7$
Order 56: $F_8$
Order 54: $C_9:C_6$ x 2, $C_9:C_6$
Order 48: $C_2^2\times A_4$
Order 42: $F_7$ x 2, $C_7:C_6$
Order 36: $D_{18}$ , $C_6\times S_3$
Order 28: $D_{14}$
Order 27: $C_9:C_3$
Order 24: $C_2\times A_4$ x 3
Order 21: $C_7:C_3$
Order 18: $C_3\times S_3$ x 2, $C_{18}$ x 2, $D_9$ x 2, $C_3\times C_6$
Order 16: $C_2^4$
Order 14: $D_7$ x 2, $C_{14}$
Order 12: $C_2\times C_6$ , $D_6$ , $A_4$
Order 9: $C_9$ x 2, $C_3^2$
Order 8: $C_2^3$ x 3
Order 7: $C_7$
Order 6: $C_6$ x 4, $S_3$ x 2
Order 4: $C_2^2$ x 3
Order 3: $C_3$ x 2
Order 2: $C_2$ x 3
Order 1: $C_1$
Classes of subgroups up to automorphism
Order 3024: $\SL(2,8):C_6$
Order 1512: ${}^2G(2,3)$
Order 1008: $C_2\times \SL(2,8)$
Order 504: $\SL(2,8)$
Order 336: $F_8:C_6$
Order 168: $F_8:C_3$
Order 112: $C_2\times F_8$
Order 108: $C_{18}:C_6$
Order 84: $C_2\times F_7$
Order 56: $F_8$
Order 54: $C_9:C_6$ x 2, $C_9:C_6$
Order 48: $C_2^2\times A_4$
Order 42: $F_7$ x 2, $C_7:C_6$
Order 36: $D_{18}$ , $C_6\times S_3$
Order 28: $D_{14}$
Order 27: $C_9:C_3$
Order 24: $C_2\times A_4$ x 3
Order 21: $C_7:C_3$
Order 18: $C_3\times S_3$ x 2, $C_{18}$ x 2, $D_9$ x 2, $C_3\times C_6$
Order 16: $C_2^4$
Order 14: $D_7$ x 2, $C_{14}$
Order 12: $C_2\times C_6$ , $D_6$ , $A_4$
Order 9: $C_9$ x 2, $C_3^2$
Order 8: $C_2^3$ x 3
Order 7: $C_7$
Order 6: $C_6$ x 4, $S_3$ x 2
Order 4: $C_2^2$ x 3
Order 3: $C_3$ x 2
Order 2: $C_2$ x 3
Order 1: $C_1$
Normal subgroups (quotient in parentheses)
Normal subgroups up to automorphism (quotient in parentheses)
Series
Derived series
$\SL(2,8):C_6$
$\rhd$
$\SL(2,8)$
magma: DerivedSeries(G);
gap: DerivedSeriesOfGroup(G);
sage: G.derived_series()
sage_gap: G.DerivedSeriesOfGroup()
Chief series
$\SL(2,8):C_6$
$\rhd$
$C_2\times \SL(2,8)$
$\rhd$
$C_2$
$\rhd$
$C_1$
magma: ChiefSeries(G);
gap: ChiefSeries(G);
sage_gap: G.ChiefSeries()
Lower central series
$\SL(2,8):C_6$
$\rhd$
$\SL(2,8)$
magma: LowerCentralSeries(G);
gap: LowerCentralSeriesOfGroup(G);
sage: G.lower_central_series()
sage_gap: G.LowerCentralSeriesOfGroup()
Upper central series
$C_1$
$\lhd$
$C_2$
magma: UpperCentralSeries(G);
gap: UpperCentralSeriesOfGroup(G);
sage: G.upper_central_series()
sage_gap: G.UpperCentralSeriesOfGroup()
Supergroups
This group is a maximal subgroup of 10 larger groups in the database.
This group is a maximal quotient of 11 larger groups in the database.
Character theory
magma: CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
gap: CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
sage: G.character_table() # Output not guaranteed to exactly match the LMFDB table
sage_gap: G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
See the $22 \times 22$ character table .
Alternatively, you may search for characters of this group with desired properties.
1A
2A
2B
2C
3A
3B
6A
6B
6C
6D
7A
9A
9B
14A
18A
18B
Size
1
1
63
63
56
168
56
168
504
504
216
168
336
216
168
336
2 P
1A
1A
1A
1A
3A
3B
3A
3B
3B
3B
7A
9A
9B
7A
9A
9B
3 P
1A
2A
2B
2C
1A
1A
2A
2A
2B
2C
7A
3A
3A
14A
6A
6A
7 P
1A
2A
2B
2C
3A
3B
6A
6B
6C
6D
1A
9A
9B
2A
18A
18B
3024.r.1a
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3024.r.1b
1
− 1
1
− 1
1
1
− 1
− 1
1
− 1
1
1
1
− 1
− 1
− 1
3024.r.1c
2
2
2
2
2
− 1
2
− 1
− 1
− 1
2
2
− 1
2
2
− 1
3024.r.1d
2
− 2
2
− 2
2
− 1
− 2
1
− 1
1
2
2
− 1
− 2
− 2
1
3024.r.7a
7
− 7
− 1
1
− 2
1
2
− 1
− 1
1
0
1
1
0
− 1
− 1
3024.r.7b
7
7
− 1
− 1
− 2
1
− 2
1
− 1
− 1
0
1
1
0
1
1
3024.r.7c
14
− 14
− 2
2
− 4
− 1
4
1
1
− 1
0
2
− 1
0
− 2
1
3024.r.7d
14
14
− 2
− 2
− 4
− 1
− 4
− 1
1
1
0
2
− 1
0
2
− 1
3024.r.8a
8
8
0
0
− 1
2
− 1
2
0
0
1
− 1
− 1
1
− 1
− 1
3024.r.8b
8
− 8
0
0
− 1
2
1
− 2
0
0
1
− 1
− 1
− 1
1
1
3024.r.8c
16
16
0
0
− 2
− 2
− 2
− 2
0
0
2
− 2
1
2
− 2
1
3024.r.8d
16
− 16
0
0
− 2
− 2
2
2
0
0
2
− 2
1
− 2
2
− 1
3024.r.21a
21
− 21
− 3
3
3
0
− 3
0
0
0
0
0
0
0
0
0
3024.r.21b
21
21
− 3
− 3
3
0
3
0
0
0
0
0
0
0
0
0
3024.r.27a
27
27
3
3
0
0
0
0
0
0
− 1
0
0
− 1
0
0
3024.r.27b
27
− 27
3
− 3
0
0
0
0
0
0
− 1
0
0
1
0
0