/* Group 3024.r downloaded from the LMFDB on 29 December 2025. */ /* Various presentations of this group are stored in this file: GPC is polycyclic presentation GPerm is permutation group GLZ, GLFp, GLZA, GLZq, GLFq if they exist are matrix groups Many characteristics of the group are stored as booleans in a record: Agroup, Zgroup, abelian, almost_simple,cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable The character table is stored as chartbl_n_i where n is the order of the group and i is which group of that order it is. Conjugacy classes are stored in the variable 'C' with elements from the group 'G'. */ /* Constructions */ GPerm := PermutationGroup< 11 | (1,2)(4,5,6,7,9,8)(10,11), (1,3,2,4,6,8)(7,9) >; /* Booleans */ RF := recformat< Agroup, Zgroup, abelian, almost_simple, cyclic, metabelian, metacyclic, monomial, nilpotent, perfect, quasisimple, rational, solvable, supersolvable : BoolElt >; booleans_3024_r := rec< RF | Agroup := false, Zgroup := false, abelian := false, almost_simple := false, cyclic := false, metabelian := false, metacyclic := false, monomial := false, nilpotent := false, perfect := false, quasisimple := false, rational := false, solvable := false, supersolvable := false>; /* Character Table */ G:= GPerm; C := SequenceToConjugacyClasses([car |< 1, 1, Id(G)>,< 2, 1, G!(10,11)>,< 2, 63, G!(2,5)(3,4)(6,8)(7,9)>,< 2, 63, G!(1,2)(3,9)(4,5)(7,8)(10,11)>,< 3, 56, G!(1,4,9)(2,5,7)(3,8,6)>,< 3, 84, G!(2,3,8)(4,6,5)>,< 3, 84, G!(2,8,3)(4,5,6)>,< 6, 56, G!(1,9,4)(2,7,5)(3,6,8)(10,11)>,< 6, 84, G!(1,8,5)(2,9,7)(10,11)>,< 6, 84, G!(1,5,8)(2,7,9)(10,11)>,< 6, 252, G!(2,6,3,5,8,4)(7,9)>,< 6, 252, G!(2,4,8,5,3,6)(7,9)>,< 6, 252, G!(1,4,7,2,5,8)(3,9)(10,11)>,< 6, 252, G!(1,8,5,2,7,4)(3,9)(10,11)>,< 7, 216, G!(1,8,5,4,2,3,7)>,< 9, 168, G!(1,3,2,4,8,5,9,6,7)>,< 9, 168, G!(1,8,3,4,7,9,6,2,5)>,< 9, 168, G!(1,5,2,6,9,7,4,3,8)>,< 14, 216, G!(1,2,8,3,5,7,4)(10,11)>,< 18, 168, G!(1,5,3,9,2,6,4,7,8)(10,11)>,< 18, 168, G!(1,9,8,6,3,2,4,5,7)(10,11)>,< 18, 168, G!(1,7,5,4,2,3,6,8,9)(10,11)>]); CR := CharacterRing(G); x := CR!\[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[1, -1, 1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1^-1,K.1,1,K.1^-1,K.1,K.1,K.1^-1,K.1^-1,K.1,1,1,K.1^-1,K.1,1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,1,1,1,1,K.1,K.1^-1,1,K.1,K.1^-1,K.1^-1,K.1,K.1,K.1^-1,1,1,K.1,K.1^-1,1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,K.1^-1,K.1,-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,-1*K.1^-1,-1*K.1,1,1,K.1^-1,K.1,-1,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |1,-1,1,-1,1,K.1,K.1^-1,-1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,-1*K.1,-1*K.1^-1,1,1,K.1,K.1^-1,-1,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[7, -7, -1, 1, -2, 1, 1, 2, -1, -1, -1, -1, 1, 1, 0, 1, 1, 1, 0, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[7, 7, -1, -1, -2, 1, 1, -2, 1, 1, -1, -1, -1, -1, 0, 1, 1, 1, 0, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,-1,1,-2,K.1^-1,K.1,2,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,K.1^-1,K.1,0,1,K.1^-1,K.1,0,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,-7,-1,1,-2,K.1,K.1^-1,2,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,K.1,K.1^-1,0,1,K.1,K.1^-1,0,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,-1,-1,-2,K.1^-1,K.1,-2,K.1^-1,K.1,-1*K.1,-1*K.1^-1,-1*K.1^-1,-1*K.1,0,1,K.1^-1,K.1,0,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |7,7,-1,-1,-2,K.1,K.1^-1,-2,K.1,K.1^-1,-1*K.1^-1,-1*K.1,-1*K.1,-1*K.1^-1,0,1,K.1,K.1^-1,0,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[8, 8, 0, 0, -1, 2, 2, -1, 2, 2, 0, 0, 0, 0, 1, -1, -1, -1, 1, -1, -1, -1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[8, -8, 0, 0, -1, 2, 2, 1, -2, -2, 0, 0, 0, 0, 1, -1, -1, -1, -1, 1, 1, 1]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,0,0,-1,2*K.1^-1,2*K.1,-1,2*K.1^-1,2*K.1,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,1,-1,-1*K.1,-1*K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,8,0,0,-1,2*K.1,2*K.1^-1,-1,2*K.1,2*K.1^-1,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,1,-1,-1*K.1^-1,-1*K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,0,0,-1,2*K.1^-1,2*K.1,1,-2*K.1^-1,-2*K.1,0,0,0,0,1,-1,-1*K.1^-1,-1*K.1,-1,1,K.1,K.1^-1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; K := CyclotomicField(3: Sparse := true); S := [ K |8,-8,0,0,-1,2*K.1,2*K.1^-1,1,-2*K.1,-2*K.1^-1,0,0,0,0,1,-1,-1*K.1,-1*K.1^-1,-1,1,K.1^-1,K.1]; x := CR!S; x`IsCharacter := true; x`Schur := 0; x`IsIrreducible := true; x := CR!\[21, -21, -3, 3, 3, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[21, 21, -3, -3, 3, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, 27, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, -1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; x := CR!\[27, -27, 3, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0]; x`IsCharacter := true; x`Schur := 1; x`IsIrreducible := true; _ := CharacterTable(G : Check := 0); chartbl_3024_r:= KnownIrreducibles(CR);