Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_2^6:(C_4\times S_3)$ |  | |
| Order: | $1536=2^{9} \cdot 3$ |  | |
| Cyclic: | no |  | |
| Abelian: | no |  | |
| Solvable: | yes |  | |
| Nilpotency class: | not nilpotent |  | 
Group action invariants
| Degree $n$: | $16$ |  | |
| Transitive number $t$: | $1300$ |  | |
| Parity: | $1$ |  | |
| Primitive: | no |  | |
| $\card{\Aut(F/K)}$: | $1$ |  | |
| Generators: | $(1,16,9,5,3,13,10,7,2,14,12,6)(4,15,11,8)$, $(1,3,2,4)(7,8)(9,10)(13,16,14,15)$ |  | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$ $24$: $S_4$, $S_3 \times C_4$ $48$: $S_4\times C_2$ $96$: 12T53 $192$: $V_4^2:(S_3\times C_2)$ $384$: 12T153 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 8: None
Low degree siblings
16T1300, 24T3348 x 2, 24T3353 x 2, 24T4486 x 2, 24T4491 x 2, 24T4584 x 2, 24T4587 x 2, 24T4767 x 2, 24T4768 x 2, 32T96743, 32T96757, 32T96808, 32T96822 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{16}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{8}$ | $3$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ | 
| 2B | $2^{8}$ | $4$ | $2$ | $8$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,15)( 6,16)( 7,13)( 8,14)$ | 
| 2C | $2^{8}$ | $6$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,10)(11,12)(13,15)(14,16)$ | 
| 2D | $2^{4},1^{8}$ | $6$ | $2$ | $4$ | $( 5, 6)( 7, 8)(13,14)(15,16)$ | 
| 2E | $2^{8}$ | $12$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,16)(14,15)$ | 
| 2F | $2^{8}$ | $12$ | $2$ | $8$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,16)( 6,15)( 7,14)( 8,13)$ | 
| 2G | $2^{4},1^{8}$ | $12$ | $2$ | $4$ | $( 9,10)(11,12)(13,14)(15,16)$ | 
| 2H | $2^{6},1^{4}$ | $24$ | $2$ | $6$ | $( 5, 7)( 6, 8)( 9,10)(11,12)(13,16)(14,15)$ | 
| 2I | $2^{4},1^{8}$ | $24$ | $2$ | $4$ | $( 1, 2)( 7, 8)(11,12)(13,14)$ | 
| 2J | $2^{8}$ | $24$ | $2$ | $8$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5,16)( 6,15)( 7,13)( 8,14)$ | 
| 3A | $3^{4},1^{4}$ | $128$ | $3$ | $8$ | $( 1, 2, 3)( 5, 8, 6)( 9,11,12)(14,16,15)$ | 
| 4A1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1, 6,11,16)( 2, 5,12,15)( 3, 8, 9,14)( 4, 7,10,13)$ | 
| 4A-1 | $4^{4}$ | $16$ | $4$ | $12$ | $( 1,16,11, 6)( 2,15,12, 5)( 3,14, 9, 8)( 4,13,10, 7)$ | 
| 4B | $4^{4}$ | $24$ | $4$ | $12$ | $( 1, 4, 3, 2)( 5, 6, 7, 8)( 9,10,11,12)(13,16,15,14)$ | 
| 4C | $4^{4}$ | $24$ | $4$ | $12$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5,16, 6,15)( 7,14, 8,13)$ | 
| 4D | $4^{4}$ | $24$ | $4$ | $12$ | $( 1,11, 2,12)( 3,10, 4, 9)( 5,16, 6,15)( 7,13, 8,14)$ | 
| 4E | $4^{4}$ | $24$ | $4$ | $12$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,14, 6,13)( 7,16, 8,15)$ | 
| 4F | $4^{2},2^{4}$ | $48$ | $4$ | $10$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5,14, 6,13)( 7,15, 8,16)$ | 
| 4G | $4^{2},2^{2},1^{4}$ | $48$ | $4$ | $8$ | $( 1, 3, 4, 2)( 5, 8)( 9,11,12,10)(13,16)$ | 
| 4H1 | $4^{4}$ | $48$ | $4$ | $12$ | $( 1,15,11, 6)( 2,16,12, 5)( 3,14, 9, 7)( 4,13,10, 8)$ | 
| 4H-1 | $4^{4}$ | $48$ | $4$ | $12$ | $( 1, 6,11,15)( 2, 5,12,16)( 3, 7, 9,14)( 4, 8,10,13)$ | 
| 4I1 | $4^{4}$ | $48$ | $4$ | $12$ | $( 1, 5,12,16)( 2, 8,11,13)( 3, 7,10,14)( 4, 6, 9,15)$ | 
| 4I-1 | $4^{4}$ | $48$ | $4$ | $12$ | $( 1,16,12, 5)( 2,13,11, 8)( 3,14,10, 7)( 4,15, 9, 6)$ | 
| 4J1 | $4^{4}$ | $48$ | $4$ | $12$ | $( 1,14, 9, 8)( 2,13,10, 7)( 3,16,11, 6)( 4,15,12, 5)$ | 
| 4J-1 | $4^{4}$ | $48$ | $4$ | $12$ | $( 1, 8, 9,14)( 2, 7,10,13)( 3, 6,11,16)( 4, 5,12,15)$ | 
| 4K | $4^{4}$ | $96$ | $4$ | $12$ | $( 1,12, 2, 9)( 3,10, 4,11)( 5,14, 6,15)( 7,16, 8,13)$ | 
| 4L | $4^{2},2^{2},1^{4}$ | $96$ | $4$ | $8$ | $( 3, 4)( 7, 8)( 9,12,10,11)(13,16,14,15)$ | 
| 6A | $6^{2},2^{2}$ | $128$ | $6$ | $12$ | $( 1, 9, 2,11, 3,12)( 4,10)( 5,16, 8,15, 6,14)( 7,13)$ | 
| 8A1 | $8^{2}$ | $96$ | $8$ | $14$ | $( 1, 7,11,16, 2, 8,12,15)( 3, 6, 9,13, 4, 5,10,14)$ | 
| 8A-1 | $8^{2}$ | $96$ | $8$ | $14$ | $( 1,15,12, 8, 2,16,11, 7)( 3,14,10, 5, 4,13, 9, 6)$ | 
| 12A1 | $12,4$ | $128$ | $12$ | $14$ | $( 1,15, 9, 6, 2,14,11, 5, 3,16,12, 8)( 4,13,10, 7)$ | 
| 12A-1 | $12,4$ | $128$ | $12$ | $14$ | $( 1, 8,12,16, 3, 5,11,14, 2, 6, 9,15)( 4, 7,10,13)$ | 
Malle's constant $a(G)$: $1/4$
Character table
33 x 33 character table
Regular extensions
Data not computed
