Learn more

Refine search


Results (1-50 of 96 matches)

Next   displayed columns for results
Label Polynomial $p$ $f$ $e$ $c$ Galois group $u$ $t$ Visible Artin slopes Visible Swan slopes Artin slope content Swan slope content Hidden Artin slopes Hidden Swan slopes Unram. Ext. Eisen. Poly. Ind. of Insep. Assoc. Inertia Resid. Poly Jump Set
2.1.16.60j1.73 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.74 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.75 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.76 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 18$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.77 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.78 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.79 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 2$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.80 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 18$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.81 $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.82 $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.83 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.84 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.85 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.86 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.87 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 2$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.88 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 18$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.105 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.106 $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.107 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.108 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{10} + 4 x^{8} + 26$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.109 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.110 $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 26$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.111 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 10$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.112 $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 8 x^{12} + 8 x^{10} + 4 x^{8} + 26$ $[45, 42, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.113 $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.114 $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 26$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.115 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.116 $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 26$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.117 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.118 $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 26$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.119 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 10$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 10$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.60j1.120 $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 26$ $2$ $1$ $16$ $60$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{49}{12}, \frac{49}{12}]$ $[2,3,\frac{37}{12},\frac{37}{12}]$ $[\frac{4}{3}, \frac{4}{3}, 3, \frac{19}{6}, \frac{19}{6}, 4, \frac{49}{12}, \frac{49}{12}]_{3}^{2}$ $[\frac{1}{3},\frac{1}{3},2,\frac{13}{6},\frac{13}{6},3,\frac{37}{12},\frac{37}{12}]_{3}^{2}$ $[\frac{4}{3},\frac{4}{3},\frac{19}{6},\frac{19}{6}]^{2}_{3}$ $[\frac{1}{3},\frac{1}{3},\frac{13}{6},\frac{13}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{15} + 8 x^{14} + 8 x^{13} + 4 x^{8} + 8 x^{4} + 26$ $[45, 45, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.129 $x^{16} + 4 x^{8} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 4 x^{8} + 16 x + 2$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.130 $x^{16} + 4 x^{8} + 16 x^{6} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 4 x^{8} + 16 x^{6} + 16 x + 2$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.131 $x^{16} + 4 x^{8} + 16 x^{2} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 4 x^{8} + 16 x^{2} + 16 x + 2$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.132 $x^{16} + 4 x^{8} + 16 x^{6} + 16 x^{2} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 4 x^{8} + 16 x^{6} + 16 x^{2} + 16 x + 2$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.133 $x^{16} + 4 x^{8} + 16 x + 18$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 4 x^{8} + 16 x + 18$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.134 $x^{16} + 4 x^{8} + 16 x^{6} + 16 x + 18$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 4 x^{8} + 16 x^{6} + 16 x + 18$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.135 $x^{16} + 4 x^{8} + 16 x^{2} + 16 x + 18$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 4 x^{8} + 16 x^{2} + 16 x + 18$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.136 $x^{16} + 4 x^{8} + 16 x^{6} + 16 x^{2} + 16 x + 18$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 4 x^{8} + 16 x^{6} + 16 x^{2} + 16 x + 18$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.137 $x^{16} + 8 x^{14} + 4 x^{8} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 8 x^{14} + 4 x^{8} + 16 x + 2$ $[49, 46, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.138 $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{6} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{6} + 16 x + 2$ $[49, 46, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.139 $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{3} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{3} + 16 x + 2$ $[49, 46, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.140 $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{6} + 16 x^{3} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{6} + 16 x^{3} + 16 x + 2$ $[49, 46, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.141 $x^{16} + 8 x^{14} + 4 x^{8} + 16 x + 18$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 8 x^{14} + 4 x^{8} + 16 x + 18$ $[49, 46, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.142 $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{6} + 16 x + 18$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) not computed not computed $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ not computed not computed not computed not computed $t + 1$ $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{6} + 16 x + 18$ $[49, 46, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.143 $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{3} + 16 x + 18$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{3} + 16 x + 18$ $[49, 46, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.144 $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{6} + 16 x^{3} + 16 x + 18$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{14} + 4 x^{8} + 16 x^{6} + 16 x^{3} + 16 x + 18$ $[49, 46, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.145 $x^{16} + 8 x^{12} + 4 x^{8} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{12} + 4 x^{8} + 16 x + 2$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
2.1.16.64f1.146 $x^{16} + 8 x^{12} + 4 x^{8} + 16 x^{6} + 16 x + 2$ $2$ $1$ $16$ $64$ $C_2^6:(C_4\times S_3)$ (as 16T1300) $2$ $3$ $[3, 4, \frac{53}{12}, \frac{53}{12}]$ $[2,3,\frac{41}{12},\frac{41}{12}]$ $[\frac{8}{3}, \frac{8}{3}, 3, \frac{23}{6}, \frac{23}{6}, 4, \frac{53}{12}, \frac{53}{12}]_{3}^{2}$ $[\frac{5}{3},\frac{5}{3},2,\frac{17}{6},\frac{17}{6},3,\frac{41}{12},\frac{41}{12}]_{3}^{2}$ $[\frac{8}{3},\frac{8}{3},\frac{23}{6},\frac{23}{6}]^{2}_{3}$ $[\frac{5}{3},\frac{5}{3},\frac{17}{6},\frac{17}{6}]^{2}_{3}$ $t + 1$ $x^{16} + 8 x^{12} + 4 x^{8} + 16 x^{6} + 16 x + 2$ $[49, 48, 32, 16, 0]$ $[1, 1, 1]$ $z^8 + 1,z^4 + 1,z + 1$ $[1, 3, 7, 15, 31]$
Next   displayed columns for results